Title

以水合蛋白質作為閘極介電層之有機場效應電晶體的特性探討

Translated Titles

Investigation of organic field-effect transistors with hydrated proteins as gate dielectric

Authors

蔡立軒

Key Words

有機場效應電晶體 ; 五苯環 ; 碳六十 ; 水合蛋白質 ; 雙載子有機場效應電晶體 ; Organic field-effect transistor ; Pentacene ; C60 ; Hydrated protein ; Ambipolar organic field-effect transistor

PublicationName

清華大學材料科學工程學系學位論文

Volume or Term/Year and Month of Publication

2014年

Academic Degree Category

博士

Advisor

黃振昌

Content Language

繁體中文

Chinese Abstract

本論文研究水合蛋白質介電層在有機場效應電晶體的應用,並探討水合蛋白質內移動離子對電晶體特性的影響。在2nm的五苯環夾層幫助下,以蠶絲蛋白作為介電層的碳六十有機場效應電晶體在真空中的飽和區載子遷移率可以從0.014 cm2V-1s-1提升至1 cm2V-1s-1。當碳六十有機場效應電晶體從真空取出,置於相對溼度55%的大氣時,飽和區載子遷移率可以進一步的提升至10 cm2V-1s-1。大氣中載子遷移率大幅提升的原因是蠶絲蛋白與水氣反應產生移動離子,讓電晶體在操作時,累積額外的電荷於導電通道內造成元件特性的改變。 研究發現水合蛋白質在大氣環境下會與水氣反應產生移動離子,造成電晶體的電性變化。在不同的相對濕度下,含蠶絲蛋白介電層之五苯環有機場效應電晶體會有不同的元件特性。當環境的相對溼度為70%,蠶絲蛋白內移動離子的數量較多,介電層電容和臨界電壓分別為100 nF/cm2和-0.9V。當相對濕度降低至40%時,移動離子減少,電容值下降至15nF/cm2,臨界電壓提升至-4V。電晶體來回掃描時的遲滯現象也受到移動離子數量的影響。相對溼度為40%的遲滯電壓位移約為4V,當相對濕度提高至50%和70%時,移動離子的數量增加,使得離子的移動能力提高,遲滯電壓位移下降為1.7V和1.3V。 由於蠶絲蛋白內離子的遷移需要時間,使用不同閘極偏壓掃描頻率的量測,五苯環有機場效應電晶體擁有不同的元件特性。高掃描頻率的量測會使得離子不及反應,讓電晶體擁有較高的臨界電壓和遲滯電壓位移,分別為-1.7V和2.6V。當掃描頻率降低至0.08V/s時,臨界電壓和遲滯電壓位移減少為-0.6V和0.5V。使用TTC鈍化層鈍化蠶絲蛋白表面,可以減少移動離子對電晶體特性的影響,讓掃描頻率對遲滯現象和臨界電壓的影響降低。 使用不同的掃描頻率量測以明膠蛋白作為閘極介電層的五苯環有機場效應電晶體,可以得到與蠶絲蛋白作為介電層類似的電性變化趨勢,主要原因是明膠蛋白在大氣中也會產生移動離子,電晶體在運作時才會有類似的電性表現。 以蠶絲蛋白作為介電層,結合n型的碳六十與p型的五苯環組成碳六十/五苯環雙層型有機場效應電晶體,在大氣中擁有良好的雙載子特性。良好的雙載子特性除了蠶絲蛋白內移動離子的貢獻外,電晶體的元件結構也是重要的因素。選用五苯環作為下層半導體,以及碳六十作為上層半導體的元件結構時,五苯環成長於蠶絲蛋白上,而碳六十則是成長於五苯環上,有助於兩者形成高結晶性薄膜且擁有高載子遷移率。在調整半導體層厚度與控制製程溫度後,可以進一步得到匹配的電子與電洞遷移率,分別為10 cm2V-1s-1和11.5 cm2V-1s-1。 連結兩個六十/五苯環雙載子有機場效應電晶體組成的雙載子反向器擁有開關特性,且可以正常運作於第一象限和第三象限的操作區間中。

English Abstract

In this thesis, we report the electrical characteristics of several organic field-effect transistors using hydrated protein as gate dielectric, and the mechanism of mobile ions in hydrated proteins is proposed. With the assistance of 2nm pentacene interlayer, the moblilty(μFE) of C60 OFET using silk fibroin as gate dielectric is improved from 0.014 cm2V-1s-1 to 1 cm2V-1s-1 in vacuum. The μFE value of the C60 OFET is further enhanced to 10 cm2V–1s–1 when the OFET is exposed to air in a relative humidity of 55 %. The enhancement of μFE is due to the generation of mobile and immobile charged ions in silk fibroin in air ambient, and additional charge carriers are accumulated in the conduction channel in OFETs operation. Generation of mobile ions in hydrated proteins may influence the chararteristics of OFETs. The characteristics of pentacene OFETs using silk fibroin as gate dielectric maybe changed at different relative humidity. At a relative humidity of 70%, the amount of mobile ions in silk fiborin is large, the dielectric capacitance and threshold voltage are 100 nF/cm2和-0.9V, respectively. The dielectric capacitance is reduced to 15 nF/cm2 and threshold voltiag is increased to -4V when the relative humidity is reduced to 40%. The hysteresis of pentacene OFETs is affected by the migration of ions in the silk fibroin. The voltage shift between forward and backward sweeps of gate voltage is 4V at a relative humidity of 40%, and the voltage shift is respectively reduced to 1.7V and 1.3V when the relative humidity is increased to 50% and 70%. Since the ions migration in the silk fibroin is a time dependent effect, OFETs operated at different gate voltage sweep rates exhibit different characteristics. At the high sweep rate, the threshold voltage and hysteresis shift are -1.7V and 2.6V, respectively. When the sweep rate is further reduced to 0.08V/s, the threshold voltage and hysteresis shift are reduced to -0.6V and 0.5V. Using tetratetracontane(TTC) layer inserted into the silk fibroin and pentacene bilayer structure, the effect of mobile ions in OFETs opreration may be reduced. The device characteristics of pentacene OFETs using gelatin as gate dielectric at different sweep rates have the same tendency as that using silk fibroin as gate dielectric. The main reson to obtain similar results is due to the ion migration in the hydrated proteins. The C60/pentacene ambipolar OFETs using silk fibroin as gate dielectric exhibit excellent performance in the air ambient. Stacking sequence of semiconductor is another factor for good performance of ambipolar OFETs. In our transistor structure, pentacene is deposited on silk fibroin and C60 is deposited on pentacen layer. The sequence of semiconductors helps to get well crystalized pentacene and C60 and the μFE values of holes and electrons are increased. The electron and hole mobility are 10 cm2V-1s-1 and 11.5 cm2V-1s-1, respectively, for a bilayer of 20nm C60 /10nm pentacene and the deposition temperature is 70℃for C60 and 25℃ for pentacene. An ambipolar inverter made with two C60/pentacene ambipolar OFETs exhibits normal swithing characteristics in both the first and third quadrants.

Topic Category 工學院 > 材料科學工程學系
工程學 > 工程學總論
Reference
  1. [2] H. Koezuka, A. Tsumura, and T. Ando, Synth. Met. 18 699 (1987).
    連結:
  2. Suzuki, K. Miyata,and H. Kawakami, IEEE Trans. Electron Devices 36, 351 (1989)
    連結:
  3. [14] C.H. Wang, C.Y. Hsieh, andJ.C. Hwang, Adv. Mater 23 (14), 1630 (2011).
    連結:
  4. [15] W. A. MacDonald, Advanced Flexible Polymeric Substrates in Organic Electronics, H. Klauk (ed.), pp. 165, Wiley-VCH, (2006).
    連結:
  5. [16] L.-K. Mao, J.-C. Hwang, T.-H. Chang, C.-Y. Hsieh, L.-S. Tsai, Y.-L. Chueh, S. S.-H. Hsu, P.-C. Lyu, and T.-J. Liu, Org. Electron. 14, 1170 (2013).
    連結:
  6. [19] S. Lee, B. Koo, J. Shin, E. Lee, and H. Park Appl. Phys. Lett. 88, 162109 (2006)
    連結:
  7. [21] W.Y. Chou, C.W. Kuo, C.W. Chang, B. L. Yeh and M. H. Chang J. Mater. Chem. 20, 5474 (2010).
    連結:
  8. [1] A. Facchetti, Materialstoday 10, 3 (2007)
    連結:
  9. [3] Z. Bao, A. Dodabalapur and A. Lovinger, Appl. Phys. Lett. 69, 4108 (1996).
    連結:
  10. [5] Y. Shirota, H. Kageyama, Chem. Rev. 107, 953 (2007).
    連結:
  11. [6] C.H. Wang, C.Y. Hsieh, andJ.C. Hwang, Adv. Mater 23 (14), 1630 (2011).
    連結:
  12. [8] T. Yamamoto, K. J. Takimiya Am. Chem. Soc. 129, 2224 (2007).
    連結:
  13. [9] S. K. Park, T. N. Jackson, J. E. Anthony, and D. A. Mourey: Appl. Phys. Lett. 91, 063514(2007).
    連結:
  14. [12] K. Kudo, M. Yamashina and T. Moriizumi, Jpn. J. Appl. Phys. 23, 130 (1984).
    連結:
  15. [16] D. J. Carswell, Nature 173, 736 (1954)
    連結:
  16. [20] S. Lee, B. Koo, J. Shin, E. Lee, H. Park and H. Kim, Appl. Phys. Lett. 88, 162109 (2006).
    連結:
  17. [22] R. J. Chesterfield, J. C. McKeen, C. R. Newman, P. C. Ewbank, D. A. da Silva Filho, J. L. Bredas, L. L. Miller, K. R. Mann and C. D. Frisbie, J. Phys. Chem. B 108 19281 (2004).
    連結:
  18. [23] S. Tatemichi, M. Ichikawa, T. Koyama and Y. Taniguchi, Appl. Phys. Lett. 89 112108 (2006).
    連結:
  19. [28] F.-C Chen, amd C.-H Lian, Appl. Phys. Lett. 93 103310 (2008).
    連結:
  20. [30] J. Jang , J. W. Kim , N. Park , J.-J. Kim , Org. Electron. 9 4812008 (2008).
    連結:
  21. [36] G.D. Wilk, R.M. Wallace, J.M. Anthony, J. Appl. Phys. 89/10 5243 (2001).
    連結:
  22. [39] D. Knipp, R. A. Street, A. Vo¨lkel, and J. Ho J. Appl. Phys. 93347 (2003).
    連結:
  23. [40] Shankar, K., and Jackson, T. N., J. Mater. Res. (2004) 19, 2003
    連結:
  24. [41] H. Moon, R. Zeis, E.-J. Borkent, C. Besnard, A. J. Lovinger, T. Siegrist,; C. Kloc, Z. Bao, J. Am. Chem. Soc. (2004) 126, 15322
    連結:
  25. [42] Arias, A. C. F. Endicott and R. A. Street, Adv. Mater. (2006) 18, 2900
    連結:
  26. [47] S. H. Kim, S. Y.n Yang, K. Shin, H. Jeon, J. W. Lee, K. P. Hong, and C. E. Park, Appl. Phys. Lett. 89, 183516 2006.
    連結:
  27. [49] J. Zaumseil and H. Sirringhaus, Chem. Rev. 107(4), 1296 (2007).
    連結:
  28. [51] M. J. Panzer and C. D. Frisbie, J. Am. Chem. Soc. 127(19), 6960 (2005).
    連結:
  29. [54] M.J. Panzer, C.D. Frisbie, Adv. Funct. Mater. 16, 1051 (2006).
    連結:
  30. [57] H. Klauk edited, Organic Electronics: Materials, Manufacturing, and Applications, p19 (weiley-vch, 2006).
    連結:
  31. [58] Schmechel, R.; Ahles, M.; von Seggern, H. J. Appl. Phys. 98, 084511 (2005).
    連結:
  32. [59] C. D. Dimitrakopoulos and P. R. L. Malenfant, Adv. Mater. 14, 99(2002)
    連結:
  33. [60] M. C. J. M. Vissenberg and M. Matters, Phys. Rev. B 57, 12964 (1998).
    連結:
  34. [63] M. Pope, C. E. Swenberg, Electronic Processes in Organic Crystals, Clarendon Press, Oxford (1999).
    連結:
  35. [65] P. G. Le Comber and W. E. Spear, Phys. Rev. Lett. 25, 509 (1970)
    連結:
  36. [66] G. Meller, T. Grasser, Advances in Polymer Science 223 p123 (Springer Verlag, 2009).
    連結:
  37. [68] O, D. Jurchescu, J, Baas, and T, T. M. Palstra, Appl. Phys. Lett. 84, 3061 (2004).
    連結:
  38. [69] O. Ostroverkhova, D. G. Cooke, S. Shcherbyna, R. F. Egerton, F. A. Hegmann, R. R. Tykwinski, and J. E. Anthony,. Phys. Rev. B 71, 35204 (2005).
    連結:
  39. [71] D. Braga, and G. Horowitz, Adv. Mater. 21, 1473 (2009).
    連結:
  40. [74] W. L. Kalb and B. Batlogg, Phys. Rev. B 81, 35327 (2010).
    連結:
  41. [76] S. Lukas, G. Witte, and Ch. Wöll, Phys. Rev. Lett. 88, 028301 (2001).
    連結:
  42. [77] E. M. Muller, and J. A. Marohn, , Adv. Mater. 17, 1410 (2005).
    連結:
  43. [78] G. Horowitz, and M. E. Hajlaoui, Adv. Mater. 12, 1046 (2000).
    連結:
  44. [83] H. Sakai, Y. Takahas and H. Murata, Appl. Phys. Lett. 91, 113502 (2007).
    連結:
  45. [84] S. Kobayashi, T. Nishikawa, T. Takenobu, S. Mori, T. Shimoda, T. Mitani, H. Shimotani, N. Yoshimoto, S. Ogawa and Y. Iwasa, Nature Mater. 3, 317 (2004).
    連結:
  46. [91] Sara A. DiBenedetto, Antonio Facchetti, Mark A. Ratner, and Tobin J. Marks, Adv. Mater. 21, 1407 (2009).
    連結:
  47. [94] D. Braga and G. Horowitz, Adv. Mater. 21, 1473 (2009).
    連結:
  48. [95] S. Y. Yang, K. Shin and C. E. Park, Adv. Funct. Mater. 15, 1806 (2005).
    連結:
  49. [99] J. Gao, K. Asadi, J. B. Xu and J. An, Appl. Phys. Lett. 94, 093302 (2009).
    連結:
  50. [102] M. Grayson, Ed. Kirk-Othmer Encyclopedia of Chemical Technology; 3rd ed.; J. Wiley and Sons: New York, Vol. 20 (1982).
    連結:
  51. [104] Minoura, N.; Aiba, S.-I.; Higuchi, M.; Biochem. Biophys. Res. Commun. 208, 511 (1995).
    連結:
  52. [107] Y.-Q. Zhang, Biotechnol Adv. 20, 91 (2002).
    連結:
  53. [113] M.K. Gupta, S.K. Khokhar, D.M. Phillips, L.A. Sowards, L.F. Drummy, M.P. Kadakia, R.R. Naik, Langmuir 23(3) 1315 (2007).
    連結:
  54. [120] R. Nazarov, H.J. Jin, and D.L. Kaplan, Biomacromolecules 5(3), 718 (2004).
    連結:
  55. [126] R. E. Marsh, R. B. Corey, and L. Pauling, Biochimica et Biophysica Acta 16, 1 (1955).
    連結:
  56. [127] S.J. He, R. Valluzzi, S.P. Gido Int. J. Biol. Macromol. 24, p.187 (1999).
    連結:
  57. [131] A. Khademhosseini, R. Langer, Biomaterials 28, 5087 (2007).
    連結:
  58. [133] J.K. Oh, D.I. Lee, J.M. Park, Prog. Polym. Sci. 34, 1261 (2009).
    連結:
  59. [136] E. Fujimori, Biopolymers 3, 115 (1965).
    連結:
  60. [137] E. Khor, Biomaterials 18, 95 (1997).
    連結:
  61. [138] Y.S. Cho, and K.B. Song, Biosci. Biotech. Biochemi. 61(7), 1194 (1997).
    連結:
  62. [143] E. J. Meijer, D. M. de Leeuw, S. Setayesh, E. van Veenendaal, B.-H.
    連結:
  63. [146] J. S. Swensen, C. Soci, and A. J. Heeger, Appl. Phys. Lett. 87, 253511, (2005).
    連結:
  64. [2] L.-K. Mao, J.-C. Hwang, T.-H. Chang, C.-Y. Hsieh, L.-S. Tsai, Y.-L. Chueh, S. S.-H. Hsu, P.-C. Lyu, and T.-J. Liu, Org. Electron. 14, 1170 (2013).
    連結:
  65. [2] C.-H. Wang, C.-Y. Hsieh, J.-C. Hwang, Adv. Mater. 23 1630 (2011).
    連結:
  66. [4] T. Matsushima, M. Yahiro, and C. Adachi, Appl. Phys. Lett. 91, 103505 (2007).
    連結:
  67. [5] C.R. Newman, C.D. Frisbie, D.A. da Silva, J.L. Bredas, P.C. Ewbank, and K.R. Mann, Chem. Mater. 16, 4436 (2004).
    連結:
  68. Appl. Phys. 44, 3663 (2005).
    連結:
  69. [8] Q. Meng, H. Dong, W. Hu, and D. Zhu, J. Mater. Chem. 21, 11708 (2011).
    連結:
  70. [9] Y. Wen, and Y. Liu, Adv. Mater. 22, 1331 (2010).
    連結:
  71. [11] H. Klauk, Chem. Soc. Rev. 39, 2643 (2010).
    連結:
  72. Proteins 44, 119 (2001).
    連結:
  73. [18] L.-K. Mao, J.-C. Hwang, T.-H. Chang, C.-Y. Hsieh, L.-S. Tsai, Y.-L. Chueh, S. S. H. Hsu, P.-C. Lyu, and T.-J. Liu, Org. Electron. 14, 1170 (2013).
    連結:
  74. [20] S. Lee, B. Koo, J. Shin, E. Lee, H. Park, and H. Kim, Appl. Phys. Lett. 88, 162109 (2006).
    連結:
  75. [21] D. C. Grahame, Chem. Rev. 41, 441 (1947).
    連結:
  76. [22] Z. Bao, A.J. Lovinger, J. Brown, J. Am. Chem. Soc. 120 207 (1998).
    連結:
  77. [23] M.M. Ling, Z. Bao, Org. Electron. 7 568 (2006).
    連結:
  78. [25] C. Keil, D. Schlettwein, Org. Electron. 12 1376 (2011).
    連結:
  79. [26] R. Ye, M. Baba, K. Mori, Jpn. J. Appl. Phys. 44 L581 (2005).
    連結:
  80. [27] W. L. Kalb and B. Batlogg, Phys. Rev. B 81, 35327 (2010).
    連結:
  81. [28] J.L. Yang, S. Schumann, T.S. Jones, J. Mater. Chem. 21 5812 (2011).
    連結:
  82. [29] B. D. Cullity, S. R. Stock, Elements of X-ray Diffraction (2001) 3rd Edition
    連結:
  83. [1] G.H. Gelinck, H.E.A. Huitema, E. van Veenendaal, E. Cantatore, L. Schrijnemakers, J.B.P.H. van der Putten, T.C.T. Geuns, M. Beenhakkers, J.B. Giesbers, B.-H. Huisman, E.J. Meijer, E. Mena Benito, F.J. Touwslager, A.W. Marsman, B.J.E. van Rens, D.M. de Leeuw, Nat. Mater. 3, 106 (2004).
    連結:
  84. [6] C.-H. Wang, C.-Y. Hsieh, and J.-C. Hwang, Adv. Mater. 23, 1630 (2011).
    連結:
  85. [7] L.-K. Mao, J.-C. Hwang, T.-H. Chang, C.-Y. Hsieh, L.-S. Tsai, Y.-L. Chueh, S. S.-H.Hsu, P.-C. Lyu, and T.-J. Liu, Org. Electron. 14, 1170 (2013).
    連結:
  86. [9] M. Taniguchi, T. Kawai, Appl. Phys. Lett. 85, 3298 (2004).
    連結:
  87. [10] M.J. Panzer, C.R. Newman, C.D. Frisbie, Appl. Phys. Lett. 86, 103503 (2005).
    連結:
  88. [11] M.J. Panzer, C.D. Frisbie, Adv. Funct. Mater. 16 (2006) 1051.
    連結:
  89. [12] L. Herlogsson, Y.-Y. Noh, N. Zhao, X. Crispin, H. Sirringhaus, M. Berggren, Adv. Mater. 20 (2008) 4708.
    連結:
  90. [13] C.-Y. Lee, J.-C. Hwang, Y.-L. Chueh, T.-H. Chang, Y.-Y. Cheng, P.-C. Lyu, Organic Electronics 14, 2645 (2013).
    連結:
  91. [17] G. Careri, A. Giansanti, and J.A. Rupley, Proc. Natl. Acad. Sci. USA 83, 6810 (1986).
    連結:
  92. [18] H. Klauk edited, Organic Electronics: Materials, Manufacturing, and Applications, p109 (weiley-vch, 2006).
    連結:
  93. [21] W. L. Kalb and B. Batlogg, Phys. Rev. B 81, 35327 (2010).
    連結:
  94. [22] S. Y. Park, M. Park, and H. H. Lee, Appl. Phys. Lett. 85, 2283 (2004)
    連結:
  95. [23] J.E. Eastoe, J. Biochem. 61, 589 (1955).
    連結:
  96. [3] J. Zaumseil and H. Sirringhaus, Chem. Rev. 107(4), 1296 (2007)
    連結:
  97. [7] Th. B. Singh, F. Meghdadi, S. Günes, N. Marjanovic, G. Horowitz, P. Lang, S. Bauer3 and N. S. Sariciftci, Adv. Mater. 17, 2315 (2005).
    連結:
  98. [8] A. Dodabalapur, H. E. Katz, L. Torsi, and R. C. Haddon, “Organic heterostructure field-effect transistors,” Science 269, 1560 (1995).
    連結:
  99. [11] H. Yan, T. Kagata and H. Okuzaki, Appl. Phys. Lett. 94, 023305 (2009).
    連結:
  100. [13] C.H. Wang, C.Y. Hsieh, andJ.C. Hwang, Adv. Mater 23 (14), 1630 (2011).
    連結:
  101. [15] S. Y. Yang, K. Shin and C. E. Park, Adv. Funct. Mater. 15, 1806 (2005).
    連結:
  102. Ch1
  103. [1] D. Kahng, and M. M. Atalla, IRE Solid-State Devices Research Conference, Carnegie Institute of Technology, Pittsburgh, PA (1960).
  104. [3] M. Mizukami, N. Hirohata, T. Iseki, K. Ohtawara, T. Tada, S. Yagyu, T. Abe, T. Suzuki, Y. Fujisaki, Y. Inoue, S. Tokito, and T. Kurita. IEEE Electron Device Lett. 27:249, (2006).
  105. [4] K. Nomoto, N. Hirai, N. Yoneya, N. Kawashima, M. Noda, M. Wada, and J. Kasahara. IEEE Trans. Electron Devices, 52:1519, (2005).
  106. [5] Y. Kato, T. Sekitani, M. Takamiya, M. Doi, K. Asaka, T. Sakurai, and T. Someya. IEEE Trans. Electron Devices, 54:202, (2007).
  107. [6] Sony co., Sony Develops a "Rollable" OTFT*1-driven OLED Display that can wrap around a Pencil -New developments with high performance organic thin-film transistors (OTFTs) with an original organic semiconductor enable roll-up capabilities- [Online]. Available at http://www.sony.net/SonyInfo/News/Press/201005/10-070E/, May 26, 2010.
  108. [7] Plastic logic co., TOPPAN and Plastic Logic to develop market for large-area, flexible EPD signage and showcase world’s first 42” protype in japan [Online]. Available at http://www.plasticlogic.com/news/?itemid=MjEwMTMxMjAzMzUwMQ==, March 4, 2013.
  109. [8] Plastic Logic shows a 4" 360x128 fully-organic flexible OTFT AMOLED prototype [Online]. Available at http://www.oled-info.com/plastic-logic-shows-4-360x128-fully-organic-flexible-otft-amoled-prototype, Apr 11, 2014.
  110. [9] A. Mimura, N. Konishi, K. Ono, J. Ohwada, Y. Hosokawa, Y. Ono, T.
  111. [10] S.M. Jahinuzzaman, A. Sultana, K. Sakariya, P. Servati,and A. Nathan, Appl. Phys. Lett (2005).
  112. [11] K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, Nature 432 488 (2004).
  113. [12] O. D. Jurchescu, M. Popinciuc, B. J. van Wees and T.T. M. Palstra Adv. Mater. 19, 688 (2007).
  114. [13] S. Lee, B. Koo, E. Lee, H. Park and H. Kim, Appl. Phys. Lett. 88, 162109 (2006)
  115. [17] K. Xiao, Y. Q. Liu, G. Yui, and D. B. Zhu, Appl. Phys. A 77 367 (2003).
  116. [18] N. C. Greenham, C. D. Dimitrakopoulos, and C. D. Frisbie, Mater. Res. Soc. Symp. Proc. v771, p169, (2003)
  117. [20] H. S. Tan, N. Mathews, T. Cahyadi, F. R. Zhu and S. G. Mhaisalkar Appl. Phys. Lett. 94, 263303 (2009)
  118. [22] R.C. Haddon, A.S. Perel, R.C. Morris, T.T.M. Palstra, A.F. Hebard, and R.M. Fleming, Appl. Phys. Lett. 67, 121 (1995).
  119. [23] Th.B. Singh, N. Marjanovic, G.J. Matt, S. Günes, N.S. Sariciftci, A.M. Ramil, A. Andreev, H. Sitter, R. Schwödiauer, and S. Bauer, Org. Electron. 6, 105 (2005).
  120. [24] T.D. Anthopoulos, B. Singh, N. Marjanovic, N.S. Sariciftci, A.M. Ramil, H. Sitter, M. Cölle, and D.M. de Leeuw, Appl. Phys. Lett. 89, 213504 (2006).
  121. [25] K. Itaka, M. Yamashiro, J. Yamaguchi, M. Haemori, S. Yaginuma, Y. Matsumoto, M. Kondo, and H. Koinuma, Adv. Mater. 18, 1713 (2006).
  122. [26] M. Kitamura, Y. Kuzumoto, M. Kamura, S. Aomori, and Y. Arakawa, Appl. Phys. Lett. 91, 183514 (2007).
  123. Ch2
  124. [2] R. D. McCullough, R. D. Lowe, M. Jayaraman and D. L. Anderson, J. Org. Chem. 58, 904 (1993).
  125. [4] A. Assadi, C. Svensson, M. Willander and O. Inganas, Appl. Phys. Lett. 53, 195 (1988).
  126. [7] J. Zhang, J. Wang, H. Wang, and D. Yan, Appl. Phys. Lett. 84, 142 (2004)
  127. [10] G. Giri, E. Verploegen, S. C. B. Mannsfeld, S. Atahan-Evrenk, D. H. Kim, S. Y. Lee, H. A. Becerril, A. Aspuru-Guzik, M. F. Toney, Z. A. Bao, Nature, 480, 504 (2011).
  128. [11] Y. Diao, B. C-K. Tee, G. Giri, J. Xu, et al. Nature Mater. 12, 665 (2013).
  129. [13] G. Horowitz, D. Fichou, X. Peng, Z. Xu and F. Garnier, Solid State Commun. 72, 381 (1989).
  130. [14] F. Garnier, G. Horowitz, X. Z. Peng and D. Fichou, Adv. Mater. 2, 592 (1990).
  131. [15] M. Madru, G. Guillaud, M. Al Sadoun, M. Maitrot, C. Clarisse, M. Le Contellec, J. J. Andre and J. Simon, Chem. Phys. Lett. 142, 103 (1987).
  132. [17] A. Hepp, H. Heil, W. Weise, M. Ahles, R. Schmechel, and H. v. Seggern, Phys. Rev. Lett. 91, 157406 (2003).
  133. [18] P. Görrn, M. Sander, J. Meyer, M. Kröger, E. Becker, H.-H. Johannes, W. Kowalsky and T. Riedl, Adv. Mat. 18, 738 (2006).
  134. [19] T. W. Kelley, P. F. Baude, C. Gerlach, D. E. Ender, D. V. Muyres, M. A. Haase, D. E. Vogel and S. D. Theiss, Chem. Mater. 16, 4413 (2004).
  135. [21] H. S. Tan, N. Mathews, T. Cahyadi, F. R. Zhu and S. G. Mhaisalkar, Appl. Phys. Lett. 94, 263303 (2009).
  136. [24] T.D. Anthopoulos, B. Singh, N. Marjanovic, N.S. Sariciftci, A.M. Ramil, H. Sitter M. Cölle, and D.M. de Leeuw, Appl. Phys. Lett. 89, 213504 (2006).
  137. [25] P. H. Wobkenberg , D. D. C. Bradley , D. Kronholm, J. C. Hummelen, D. M. de Leeuw , M. Colle , T. D. Anthopoulos , Synth. Met. 158 468 (2008).
  138. [26] Y. Inoue, Y. Sakamoto, T. Suzuki1, M. Kobayashi, Y. Gao and S. Tokito, Jpn. J. Appl. Phys. 44 3663 (2005).
  139. [27] D. Shukla , S. F. Nelson , D. C. Freeman , M. Rajeswaran, W. G. Ahearn , D. M. Meyer , J. T. Carey , Chem. Mater. 20 7486 (2008).
  140. [29] K. Itaka, M. Yamashiro, J. Yamaguchi, M. Haemori, S. Yaginuma, Y. Matsumoto, M. Kondo, and H. Koinuma, Adv. Mater. 18, 1713 (2006).
  141. [31] C. J. Brabec , A. Cravino , D. Meissner , N. S. Sariciftci , T. Fromherz , M. T. Rispens , L. Sanchez , J. C. Hummelen , Adv. Funct. Mater. 11 374 (2001).
  142. [32] C. Rost, S. Karg, W. Rieß, M. A. Loi, M. Murgia, and M. Muccini, Appl. Phys. Lett. 85 1613 (2004).
  143. [33] D. Gamota, P. Brazis, K. Kalyanasundaram, J. Zhang, Printed organic and molecular electronics (Kluwer Academic Pub, USA, 2004) p350.
  144. [34] C.-A. DI, Y. LIU, G. YU, and D. ZHU, ACCOUNTS OF CHEMICAL RESEARCH, 42 1573 (2009).
  145. [35] A. Facchetti, M.-H.Y., T.J. Marks, Advanced Materials, 17 705 (2005).
  146. [37] H. W. Zan, K. H. Yen, P. K. Liu, K. H. Ku, C. H. Chen, and J. Hwang, Org. Electron. 8 450 (2007).
  147. [38] L. S. Tsai, C. H. Wang, W. Y. Chen, W. C. Wang, and J. Hwang, Organic Electronics, 11 123 (2010).
  148. [43] H. S. Lee, D. H. Kim, J. H Cho,. Y. D. Park, J. S. Kim, K. Cho, Adv. Funct. Mater. (2006) 16, 1859
  149. [44] T. W. Kelley, D. V. Muyres, P. F. Baude, T. P. Smith and T. D. Jones, Mat. Res. Soc. Symp. Proc. 771 169 (2003)
  150. [45] T. W. Kelley, P. F. Baude, C. Gerlach, D. E. Ender, D. Muyres, M. A. Haase, D. E. Vogel and S. D. Theiss, Chem. Mater. 16 4413 (2004)
  151. [46] K. Bruce Thurmond II, T. Kowalewski, and K. L. Wooley, J. Am. Chem. Soc., 118, 7239(1996).
  152. [48] L.-L. Chua, J. Zaumseil, J.-F. Chang, E. C.-W. Ou, P. K.-H. Ho, H. Sirringhaus, and R. H. Friend, Nature 434, 194 (2005).
  153. [50] Th.B. Singh, N. Marjanovic, G.J. Matt, S. Günes, N.S. Sariciftci, A.M. Ramil, A. Andreev, H. Sitter, R. Schwödiauer, and S. Bauer, Org. Electron. 6, 105 (2005).
  154. [52] T. Ozel , A. Gaur , J. A. Rogers , and M. Shim, Nano Lett. 5(5), 905 (2005).
  155. [53] L. Herlogsson, Y.-Y. Noh, N. Zhao, X. Crispin, H. Sirringhaus, M. Berggren, Adv. Mater. 20, 4708 (2008).
  156. [55] L. Herlogsson, X. Crispin, N. D. Robinson, M. Sandberg, O. Hagel, G. Gustafsson, and M. Berggren, Adv. Mater. 19, 97 (2007).
  157. [56] D. Gamota, P. Brazis, K. Kalyanasundaram, J. Zhang, Printed, organic and molecular electronics p373 (Kluwer Academic Pub, USA, 2004).
  158. [61] Y. H. Lo, Emerging Optoelectronic Technologies and Applications p251 (world scientific,1997)
  159. [62] N. Tessler, Y. Preezant, N. Rappaport, and Y. Roichman, Adv. mater. 21, 2741 (2009).
  160. [64] C. Karnutsch, Low threshold organic thin-film laser devices p13 (Cuvillier Verlag Gottingen, 2007).
  161. [67] M. S. Hybertsen and S. G. Louie, PHYSICAL REVIEW B 34, 5390 (1986).
  162. [70] V. Podzorov, E.Menard, J. A.Rogers, and M. E. Gershenson, Phys. Rev. Lett. 95, 226601 (2005).
  163. [72] R.Ruiz, A. Papadimitratos, A. C. Mayer and G. G. Malliaras, Adv. Mater. 17, 1795 (2005)
  164. [73] A. Salleo, M. L. Chabinyc, M. S. Yang, and R. A. Street, Appl. Phys. Lett. 81, 4383 (2004).
  165. [75] S. A. DiBenedetto, A. Facchetti, M. A. Ratner, and T. J. Marks, Adv. Mater. 21, 1407 (2009).
  166. [79] S. Steudel, S. D. Vusser, S. D. Jonge, D. Janssen, S. Verlaak, J. Genoe, and P.Heremans, Appl. Phys. Lett. 85, 4400 (2004).
  167. [80] S. E. Fritz , T. W. Kelley , and C. D. Frisbie, J. Phys. Chem. B, 109(21), 10574 (2005).
  168. [81] D. Knipp, R. A. Street, and A. R. Völkel, Appl. Phys. Lett. 82, 3907 (2003).
  169. [82] C. A. Nguyen, P. S. Lee and S. G. Mhaisalkar, Org. Electron. 8, 415 (2007).
  170. [85] Y. Jang, J. H. Cho, D. H. Kim, Y. D. Park, M. Hwang and K. Cho, Appl. Phys. Lett. 90, 132104 (2007).
  171. [86] Janos Veres, Simon Ogier, and Giles Lloyd, Chem. Mater. 16, 4543 (2004).
  172. [87] Sirringhaus, H.; Wilson, R. J.; Friend, R. H.; Inbasekaran,M.; Wu, W.; Woo, E. P., Appl. Phys. Lett. 77, 406 (2000).
  173. [88] K. Suemori, S. Uemura, M. Yoshida, S. Hoshino, N. Takada, T. Kodzasa, and T. Kamata, Appl. Phys. Lett. 91, 192112 (2007).
  174. [89] G. G. Ting II, O. Acton, H. Ma, J. W. Ka, and A. K.-Y. Jen, Langmuir 25, 2140 (2009).
  175. [90] K. P. Pernstich, S. Haas, D. Oberhoff, C. Goldmann, D. J. Gundlach, B. Batlogg, A. N. Rashid, and G. Schitter, J. Appl. Phys. 96, 6431 (2004).
  176. [92] S. H. Kim, H. Yang, S. Y. Yang, K. Hong, D. Choi, C. Yang, D. S. Chung and C. E. Park, Org. Electron. 9, 673 (2008).
  177. [93] K. Suemori, M. Taniguchi, S. Uemura, M. Yoshida, S. Hoshino, N. Takada, T. Kodzasa and T. Kamata, Appl. Phys. Express 1, 061801 (2008).
  178. [96] H. Yang, S. H. Kim, L. Yang, S. Y. Yang and C. E. Park, Adv. Mater. 19, 2868 (2007).
  179. [97] T. Umeda, D. Kumaki and S. Tokito, J. Appl. Phys. 105, 024516 (2009).
  180. [98] P. Miskiewicz, S. Kotarba, J. Jung, T. Marszalek, M. M. Torrent, E. G. Nadal, D. B. Amabilino, C. Rovira, J. Veciana, W. Maniukiewicz and J. Ulanski, J. Appl. Phys. 104, 054509 (2008).
  181. [100] S. C. Lima, S. Hyun Kima, J. H. Leea, M. K. Kima, D. J. Kimb, T. Zyunga, Synthetic Metals 148, 75 (2005).
  182. [101] W. Y. Chou, C. W. Kuo, H. L. Cheng, Y. R. Chen and F. C. Tang, Appl. Phys. Lett. 89, 112126 (2006).
  183. [103] I.C. Stancu, R. Filmon, C. Cincu, B. Marculescu, C. Zaharia, Y. Turmen, M.F. Basle, and D. Chappard, Biomaterials 25(2), 202 (2003).
  184. [105] D. L. Kaplan, S. J. Lombardi, W. S. Muller, S. A. Fossey, in Biomaterials: Novel Materials from Biological Sources; Byrom, D., Ed.; Stockton: New York pp 1-53 (1991).
  185. [106] K. Mita, S. Ichimura, T. James, J. Mol. Evol. 38, 583 (1994).
  186. [108] M. Santin, A. Motta, G. Freddi, and M. Cannas, J. Biomed. Mater. Res., 46, 382 (1991)
  187. [109] W. H. Park, W. S. Ha, H. Ito, T. Miyamoto, H. Inagaki, and Y. Noishiki, Fibers and Polymers, 2, 58 (2001).
  188. [110] H. Sakabe, H. Ito, T. Miyamoto, Y. Noishiki, and W. S. Ha, Sen-i Gakkaishi, 45, 487 (1989).
  189. [111] S. Sofia, M.B. McCarthy, G. Gronowicz, D.L. Kaplan, Journal of Biomedical Materials Research 54(1), 139 (2001).
  190. [112] L. Meinel, S. Hofmann, V. Karageorgiou, C. Kirker-Head, J. McCool, G. Gronowicz, L. Zichner, R. Langer, G. Vunjak-Novakovic, and D.L. Kaplan, 26(2) 147 (2005).
  191. [114] H.J. Jin, J. Park, R. Valluzzi, P. Cebe, and D.L. Kaplan, 5(3):711 (2004).
  192. [115] T. Arai, G. Freddi, R. Innocenti, M. Tsukada, J. Appl. Polym. Sci. 91(4):2383 (2004).
  193. [116] Y. Li, Y. Cai, X. Kong, J. Yao , Appl. Surf. Sci. 255, 1681 (2008).
  194. [117] X.D. Kong, F.Z. Cui, X.M. Wang, W. Zhang, J. Cryst. Growth, 270,
  195. 197 (2004).
  196. [118] Y.Z. Wang, D.J. Blasioli, H.J. Kim, H.S. Kim, and D.L. Kaplan, Biomaterials 27(25), 4434 (2006).
  197. [119] M. Li, Z. Wu, C. Zhang, S. Lu, H. Yan, D. Huang, and H. Ye, J. Appl. Polym. Sci. 79(12), 2192 (2001).
  198. [121] H. Aoki, N. Tomita, Y. Morita, K. Hattori, Y. Harada, M. Sonobe, S. Wakitani, S., and Y. Tamada, 13(4), 309 (2003).
  199. [122] M. Fini, A. Motta, P. Torricelli, G. Giavaresi, N. Nicoli Aldini, M. Tschon, R. Giardino, and C. Migliaresi, Biomaterials 26, 3527 (2006).
  200. [123] U.J. Kim, J. Park, C. Li, H.J. Jin, R. Valluzzi, and D.L. Kaplan, Biomacromolecules 5(3), 786 (2004).
  201. [124] B. LOTZ, and F. C. Cesari, Biochimie 61, 105 (1979).
  202. [125] K. Mita, S. Ichimura, M. Zama, T. James, J. Mol. Biol. 203, 917 (1988).
  203. [128] R, Valluzzi, S. P. Gido, W. Muller, and D. L. Kaplan, Int. J Biol. Macromol. 24, 237 (1999).
  204. [129] M.K. Gupta, S. Singamaneni, M. McConney, L.F. Drummy, R.R. Naik, and V.V. Tsukruk, Adv. Mater. 22, 115 (2010).
  205. [130] M.A. Vandelli, M. Romagnoli, A. Monti, M. Gozzi, P. Guerra, F. Rivasi, F. Forni, J. Control Release 96, 67 (2004).
  206. [132] T. Coviello, P. Matricardi, C. Marianecci, F. Alhaique, J. Control Release 119, 5 (2007).
  207. [134] Abrusci C, Martin-Gonzalez A, Amo AD, Corrales T, and Catalina F, Polym Degrad Stabil 86:283 (2004).
  208. [135] E. Schach, A.V.D. Bulcke, B. Bogdanov, J.P. Draye, and B. Delaey, Polym Mater Sci Eng 79, 222 (1998).
  209. [139] J.H. Muyonga, C.G.B. Cole, and K.G. Duodu, Food Chemistry 86,325 (2004).
  210. [140] V. Coropceanu, J. Cornil, D. A. da Silva Filho, Y. Olivier, R. Silbey, J. L Brédas. Chem. Rev. 107, 926 (2007).
  211. [141] S.M. Sze, Semiconductor Devices: Physics and Technology 2rd edition, Ch6, (2002).
  212. [142] A. Rolland, J. Richard, J. P. Kleider, and D. Mencaraglia, J. Electrochem. Soc. 140, 3679 (1993).
  213. Huisman, P. W. M. Blom, J. C. Hummelen, U. Scherf, and T. M. Klapwijk, Nat. Mater. 2, 678 (2003)
  214. [144] T. D. Anthopoulos, D. M. de Leeuw, S. Setayesh, E. Cantatore, C. Tanase, P. W. M. Blom, and J. C. Hummelen, Mater. Res. Soc. Symp. Proc. 871E, I11.9.1 (2005)
  215. [145] C. Rost, S. Karg, W. Riess, M. A. Loi, M. Murgia, and M. Muccini, Appl. Phys. Lett. 85, 1613, (2004).
  216. [147] G. Paasch, T. Lindner, C. Rost-Bietsch, S. Karg, W. Riess, and S. Scheinert, J. Appl. Phys. 98, 084505 (2005).
  217. [148] C. Rost, D. J. Gundlach, S. Karg, and W. Rie, J. Appl. Phys. 95, 5782 (2004).
  218. Ch3
  219. [1] C.H. Wang, C.Y. Hsieh, and J.C. Hwang, Adv. Mater 23 (14), 1630 (2011).
  220. [3] 汪建民, 材料分析,中國材料科學學會, p259 (2005).
  221. [4] H. Fujita, Micromachines as tools for nanotechnology p124 (Springer Verlag, New York, 2003).
  222. [5] 許樹恩、吳泰伯, X光繞射原理與材料結構分析, p501 (1992).
  223. [6] B.D. Cullity and S.R. Stock, Elements of X-RAY Diffraction 3rd edition, p.95 (Prentice Hall 2001).
  224. Ch4
  225. [1] K. Nomura, A. Takagi, T. Kamiya, H. Ohta, M. Hirano, H. Hosono, Jpn. J. Appl. Phys. 45 4303 (2006).
  226. [3] J.S. Lee, S. Chang, S.M. Koo, S.Y. Lee, IEEE Electr. Dev. Lett. 31 225 (2010).
  227. [6] G. Gelinck, P. Heremans, K. Nomoto, and T.D. Anthopoulos, Adv. Mater. 22,
  228. 3778 (2010).
  229. [7] Y. Inoue, Y. Sakamoto, T. Suzuki, M. Kobayashi, Y. Gao, and S. Tokito, Jpn. J.
  230. [10] T.W. Kelley, D.V. Muyres, P.F. Baude , T.P. Smith , and T.D. Jones, Mater. Res. Soc. Symp. Proc. 771, 169 (2003).
  231. [12] R.C. Haddon, A.S. Perel, R.C. Morris, T.T.M. Palstra, A.F. Hebard, and R.M. Fleming, Appl. Phys. Lett. 67, 121 (1995).
  232. [13] Th.B. Singh, N. Marjanovic, G.J. Matt, S. Günes, N.S. Sariciftci, A.M. Ramil, A. Andreev, H. Sitter, R. Schwödiauer, and S. Bauer, Org. Electron. 6, 105 (2005).
  233. [14] T.D. Anthopoulos, B. Singh, N. Marjanovic, N.S. Sariciftci, A.M. Ramil, H. Sitter, M. Cölle, and D.M. de Leeuw, Appl. Phys. Lett. 89, 213504 (2006).
  234. [15] K. Itaka, M. Yamashiro, J. Yamaguchi, M. Haemori, S. Yaginuma, Y. Matsumoto, M. Kondo, and H. Koinuma, Adv. Mater. 18, 1713 (2006).
  235. [16] M. Kitamura, Y. Kuzumoto, M. Kamura, S. Aomori, and Y. Arakawa, Appl. Phys. Lett. 91, 183514 (2007).
  236. [17] C.-Z Zhou, F. Confalonieri, M. Jacquet., R. Perasso., and Z.-G Li, J. Janin,
  237. [19] T. Jung, A. Dodabalapur, R. Wenz, and S. Mohapatra, Appl. Phys. Lett. 87, 182109 (2005).
  238. [24] K. Kim, T.H.Kwak, M.Y. Cho, J.W. Lee, J. Joo, Synthetic Met. 158 553 (2008).
  239. [30] L.-L. Chua, J. Zaumseil, J.-F. Chang, E.C.-W. Ou, P. K.-H. Ho, H. Sirringhau, R.H. Friend, Nature 434 194 (2005).
  240. Ch5
  241. [2] J.A. Rogers, Z. Bao, K. Baldwin, A. Dodabalapur, B. Crone, V.R. Raju, V. Kuck, H. Katz, K. Amundson, J. Ewing, P. Drzaic, Proc. Natl. Acad. Sci. USA 98, 4835 (2001).
  242. [3] H. Klauk, M. Halik, U. Zschieschang, G. Schmid, W. Radlik, J. Appl. Phys. 92 5259 (2002).
  243. [4] T.G. Kim, E.H. Jeong, S.C. Lim, S.H. Kim, G.H. Kim, S.H. Kim, H.Y. Jeon, J.H. Youk, Synth. Met. 159, 749 (2009).
  244. [5] H.W. Zan, K.H. Yen, P.K. Liu, K.H. Ku, C.H. Chen, J.C. Hwang, Org. Electron. 8, 450 (2007).
  245. [8] J. Takeya, K. Yamada, K. Hara, K. Shigeto, K. Tsukagoshi, S. Ikehata, Y. Aoyagi, Appl. Phys. Lett. 88, 112102 (2006).
  246. [14] C.Y. Hsieh, J.C. Hwang, T.H. Chang, J.Y. Li, S.H. Chen, L.K. Mao, L.S. Tsai, Y.L. Chueh, P.C. Lyu, S.H. Hsu, Appl. Phys. Lett. 103, 023303 (2013).
  247. [15] S. H. Kim, W. M. Yun, O.-K. Kwon, K. Hong, C. Yang, W.-S. Choi, C. E. Park, J. Phys. D: Appl. Phys. 43, 465102 (2010).
  248. [16] M. Egginger, S. Bauer, R. Schwödiauer, H. Neugebauer, N. S. Sariciftci, Monatsh Chem 140, 735–750 (2009).
  249. [19] S. Ono, K. Miwa, S. Seki and J. Takeya, Appl. Phys. Lett. 94, 063301 (2009).
  250. [20] K.N.N. Unni, S. Dabos-Seignon, J.M. Nunzi, J. Phys. D-Appl. Phys. 38 1148 (2005).
  251. Ch6
  252. [1] E. J. Meijer, D. M. de Leeuw, S. Setayesh, E. van Veenendaal, B.-H. Huisman, P. W. M. Blom, J. C. Hummelen, U. Scherf, and T. M. Klapwijk, Nat. Mater. 2, 678 (2003).
  253. [2] T. D. Anthopoulos, D. M. de Leeuw, S. Setayesh, E. Cantatore, C. Tanase, P. W. M. Blom, and J. C. Hummelen, Mater. Res. Soc. Symp. Proc. 871E, I11.9.1 (2005).
  254. [4] F. S. Kim, X. Guo, M. D. Watson, and S. A. Jenekhe, Adv. Mater. 22, 482 (2010).
  255. [5] M. L. Tang, A. D. Reichardt, N. Miyaki, R. M. Stoltenberg, and Z. Bao, J. Am. Chem. Soc. 130, 6064 (2008).
  256. [6] Y. Inoue, Y. Sakamoto, T. Suzuki1, M. Kobayashi, Y. Gao and S. Tokito, Jpn. J. Appl. Phys. 44 3663 (2005).
  257. [9] E. K., Y. Kubozono, T. Hosokawa, T. Nagano, K. Masunar, and A. Fujiwara, Appl. Phys. Lett. 85, 4765 (2004).
  258. [10] S.D. Wang, K. Kanai, Y. Ouchi, K. Seki, Org. Electro. 7, 457 (2006).
  259. [12] D. Guo, S. Ikeda, K. Saiki, H. Miyazoe and K. Terashima, J. Appl. Phys. 99, 094502 (2006).
  260. [14] T. W. Kelley, P. F. Baude, C. Gerlach, D. E. Ender, D. V. Muyres, M. A. Haase, D. E. Vogel and S. D. Theiss, Chem. Mater. 16, 4413 (2004).
  261. [16] H. S. Tan, N. Mathews, T. Cahyadi, F. R. Zhu and S. G. Mhaisalkar, Appl. Phys. Lett. 94, 263303 (2009).
  262. [17] S.D. Wang, K. Kanai, Y. Ouchi, and K. Seki, Org. Electron. 7, 457 (2006).