Title

1. 功能性高分子 PDPyMA 的合成與應用 2. 矽膠交聯之熟成控制 3. Co(Salen*) 在水相中催化之自由基聚合反應

Translated Titles

1.Synthesis and Application of Functional Polymer –PDPyMA 2.Control of Curing Time for Siloxane Crosslinking 3.Co(Salen*) Mediated Radical Polymerization in Aqueous Phase

Authors

許修豪

Key Words

功能性高分子 ; 矽氫化反應 ; 可控自由基聚合 ; functional polymer ; Hydrosilylation ; controlled radical polymerization

PublicationName

清華大學化學系所學位論文

Volume or Term/Year and Month of Publication

2014年

Academic Degree Category

碩士

Advisor

彭之皓

Content Language

繁體中文

Chinese Abstract

功能性高分子, “Poly Di(pyridin-2-yl)methyl acrylate” (PDPyMA),被成功的合成出來。它可以充當各種金屬的載體以進行各類型的催化反應,其中在鈴木偶聯反應中,它是個良好的載體,可以進行10次的鈴木偶聯反應催化,且每一次的反應可以維持其催化活性。但其充當載體也有條件限制,並不能在酸性或鹼性的水溶液下進行反應,否則PDPyMA會被水解成聚丙烯酸(PAA),失去其充當載體的特性。此外,不同金屬配位上功能性單體“Di(pyridin-2-yl)methyl acrylate” (DPyMA)的晶體已被X-ray鑑定出來,包括銅金屬以及鈷金屬,以建立出不同金屬錯合物的結構資料庫。 矽氫化反應在工業上被應用在合成含碳矽高分子的材料中,在生產過程中通常會添加抑制劑,其目的在於避免在預拌過程中先行發生交聯的情況(較低溫),但在熟成過程中(較高溫)又須短時間內達成交聯的目的,以達到迅速製成的工業要求。Dimethyl fumarate 抑制劑是個較好的選擇,其可以在預拌過程中有較長的抑制效果(8小時),且在熟成時具有較短的熟成時間(45分鐘)。 水溶性的鈷金屬錯合物CoII(salophene)被用作控制丙烯酸和乙烯基吡啶聚合反應的催化劑。在控制丙烯酸聚合的表現上,由於丙烯酸上的羥基會影響CoII(salophene)對於聚合的調控,所以其控制效果不如預期。而在控制乙烯基吡啶聚合表現中,可藉由使用1,1,1,3,3,3-六氟代-2-丙醇,這種會和乙烯基吡啶形成氫鍵的溶劑來減少吡啶配位到CoII(salophene)的情形,以達到較好的聚合控制效果。

English Abstract

Functional polymer, “Poly Di(pyridin-2-yl)methyl acrylate” (PDPyMA) was synthesized successfully, which could be served as supporters for different metals to do different catalytic reactions. In the reaction of suzuki-miyaura coupling, it could be a good supporter for ten cycles, with low yield subtraction at every circle. The condition of catalytic reactions must “not” in acid/basic aqueous, or the functional polymer“ PDPyMA” would be hydrolysis into poly acrylic acid (PAA) losing the function of being supporters for metals. Different metals including copper and cobalt metals coordinated to functional monomer “Di(pyridin-2-yl)methyl acrylate” (DPyMA) were characterized by X-ray in order to build up database of different structures of complexes. Hydrosilylation is widely used industrially for the preparation of monomers with silicon-carbon bonds and for producing crosslinked polymers. Inhibitors are often used in industry to control the platinum-mediated addition reaction of curable systems. The addition of inhibitors prevents hydrosilylation at premix period (low temperature) while permitting rapid reaction at elevated temperature (Curing period). Dimethyl fumarate would be a good candidate for company with longer premix time (8 hours) and shorter curing time (45 minutes). Water soluble CoII(salophene) complexes was used to do acrylic acid and 4-vinyl pyridine controlled radical polymerization. The effect of controlling acrylic acid polymerization was not as good as I expected. CoII(salophene) would be affected by hydroxyl of acrylic acid and led to poor control. In the 4-vinyl pyridine controlled radical polymerization, 1, 1, 1, 3, 3, 3-hexafluoro-2-propanol was used as solvent, which can interact with 4-vinyl pyridine via hydrogen bonding and reduce the phenomenon of binding to the CoII(salophene) catalyst.

Topic Category 基礎與應用科學 > 化學
理學院 > 化學系所
Reference
  1. J.; Gau S. C.; MacDiarmid A. G.; Phys. Rev. Lett. 1977, 39 1098.
    連結:
  2. [4] Kraft A.; Grimsdale A. C.; Holmes A. B., Angew. Chem. Int. Ed. 1998, 37 402.
    連結:
  3. [6] Sariciftci N. S.; Opin Curr.. Solid-State Mater. Sci. 1999, 4 373.
    連結:
  4. [7] Bao Z.; Adv. Mater. 2000, 12 227.
    連結:
  5. [8] Horowitz G.; Adv. Mater. 1998, 10 365.
    連結:
  6. [9] Sirringhaus H.; Tessler N.; Friend R. H., Science 1998, 280 1741
    連結:
  7. [19] Liu, F.; Urban, M. W., Prog. Polym. Sci. 2010, 35 3-23.
    連結:
  8. [20] Palmer, R. J., Encyclopedia Of Polymer Science and Technology. 2001,618-641
    連結:
  9. [21] Ramsden, J.J., Elsevier 2011.
    連結:
  10. [22] Zsigmondy, R., Wiley 1914.
    連結:
  11. [28] Welterlich, I.; Tieke, B., Macromolecules 2011, 44, 4194.
    連結:
  12. [29] M. Q. Zhang and M. Z. Rong, Polym. Chem. 2013, 4, 4878–4884
    連結:
  13. [31] Ott, C.; Ulbricht, C.; Hoogenboom, R.; Schubert Macromol. Rapid Commun. 2012, 33 556-561.
    連結:
  14. [33] Housni, A.; Zhao, Y., Langmuir 2010, 26 12933-12939.
    連結:
  15. [36] 杜宗翰, 清華大學化學系學位論文 2013, 1-77.
    連結:
  16. [38] Szwarc, M. Nature 1956, 178, 1168.
    連結:
  17. [40] Fischer, H. Chem Rev 2001, 101, 3581.
    連結:
  18. [42] Poli, R. Angew. Chem. Int. Ed. 2006, 45, 5058.
    連結:
  19. [43] Yamago, S. Chem. Rev. 2009, 109, 5051.
    連結:
  20. [44] Matyjaszewski, K.; Xia, J. H. Chem. Rev. 2001, 101, 2921.
    連結:
  21. [45] Kamigaito, M.; Ando, T.; Sawamoto, M. Chem Rev 2001, 101, 3689.
    連結:
  22. [46] Tsarevsky, N. V.; Matyjaszewski, K. Chem. Rev. 2007, 107, 2270.
    連結:
  23. [47] Wang, J. S.; Matyjaszewski, K. J. Am. Chem. Soc. 1995, 117, 5614.
    連結:
  24. [48] Favier, A.; Charreyre, M.-T. Macromol. Rapid Comm. 2006, 27, 653.
    連結:
  25. [50] Goto, A.; Ohno, K.; Fukuda, T. Macromolecules 1998, 31, 2809.
    連結:
  26. [56] Gaynor, S.; Matyjaszewski, K. In ACS Symp. Ser. 1998; Vol. 685, p 396.
    連結:
  27. [57] Kwak, Y.; Goto, A.; Fukuda, T.; Kobayashi, Y.; Yamago, S. Macromolecules 2006, 39, 4671.
    連結:
  28. [62] Phan, T. N. T.; Bertin, D., Macromolecules 2008, 41 1886-1895.
    連結:
  29. [63] Matyjaszewski, K.; Xia, J., Chem. Rev. 2001, 101 2921-2990.
    連結:
  30. [64] Tsarevsky, N. V.; Matyjaszewski, K., Chem. Rev. 2007, 107 2270-2299.
    連結:
  31. [68] Favier, A.; Charreyre, M. T., Macromol. Rapid Commun. 2006, 27 653-692.
    連結:
  32. [70] Chang, C.-W.; Nguyen, T. H.; Maynard, H. D., Macromol. Rapid Commun. 2010, 31 1691-1695.
    連結:
  33. [75] Debuigne, A.; Caille, J. R.; Jerome, R. Angew. Chem. Int. Ed. 2005, 44, 1101.
    連結:
  34. [80] Anastas, P. T.; Lankey, R. L., Green Chem. 2000, 289-295.
    連結:
  35. [81] Thomas, J. M.; Thomas, W. J.; Anderson, J.; Boudart, M., Principles and practice of heterogeneous catalysis. VCH Weinheim: 1997; Vol. 638.
    連結:
  36. [83] Silver, R. G.; Sawyer, J. E.; Summers, J. C. In Catalytic control of air pollution: Mobile and stationary sources, ACS symposium series (USA), 1992.
    連結:
  37. [87] Schweizer S.; Becht J.; Drian C. L., Org. Lett. 2007, 9 3777
    連結:
  38. [89] Crudden C. M.; Sateesh M.; Lewis R., J. Am. Chem. Soc. 2005,127 10045
    連結:
  39. [91] Tagata T.; Nishida M., J. Org. Chem. 2003, 6, 9412
    連結:
  40. [93] Cannizzaro, S., 1853, 88 129–130
    連結:
  41. [94] Lewis L. N.; Stein J.; Robert Y. G.; Colborn E.; Hutchins G. Platinum Metals Rev., 1997, 41
    連結:
  42. [97] Kamigaito, M.; Ando, T.; Sawamoto, M., Chem. Rev. 2001, 101 3689-3746.
    連結:
  43. [99] Shylesh, S.; Schünemann, V.; Thiel, W. R., Angew. Chem. Int. Ed. 2010, 49 3428-3459.
    連結:
  44. [101] Jones, M., Eur. Polym. J. 1999, 35 795-801.
    連結:
  45. [105] Ott, C.; Ulbricht, C.; Hoogenboom, R.; Schubert, U. S., Macromol. Rapid Commun. 2012, 33 556-561.
    連結:
  46. [109] Liu, F.; Urban, M. W., Prog. Polym. Sci. 2010, 35 3-23.
    連結:
  47. [110] Tasdelen, M. A.; Kahveci, M. U.; Yagci, Y., Prog. Polym. Sci. 2011, 36 455-567.
    連結:
  48. [114] Stuart, M. A. C.; Huck, W. T. S.; Genzer, J.; Muller, M.; Ober, C.; Stamm, M.; Sukhorukov, G. B.; Szleifer, I.; Tsukruk, V. V.; Urban, M.; Winnik, F.; Zauscher, S.; Luzinov, I.; Minko, S., Nature Mater. 2010, 9 101-113.
    連結:
  49. [117] Housni, A.; Zhao, Y., Langmuir 2010, 26 12933-12939.
    連結:
  50. [1] http://en.wikipedia.org/wiki/Functional_polymers
  51. [2] Chiang C. K.; Fincher C. R.; Jr.; Park Y. W.; Heeger A. J.; Shirakawa H.;Louis E.
  52. [3] Friend R. H.; Gymer R. W.; Holmes A. B.; Burroughes J. H.; Marks R. N.; Taliani
  53. C.; Bradley D. D. C.; Dos Santos D. A.; Bredas J. L.; Logdlund M.; Salaneck W. R., Nature 1999, 397 121
  54. [5] Yu G.; Wang J.; McElvain J.; Heeger A. J., Adv. Mater. 1998, 10 1431.
  55. [10] Li, L.; Xing, X.; Liu, Z., Journal of Applied Polymer Science 2012, 124 1128-1136.
  56. [11] Roth, P. J.; Davis, T. P.; Lowe, A. B., Polym. Chem. 2012.
  57. [12] Zhang, J.; Chu, L. Y.; Li, Y. K.; Lee, Y. M., Polymer 2007, 48 1718-1728.
  58. [13] Xiong, Z.; Peng, B.; Han, X.; Peng, C.; Liu, H.; Hu, Y., J. Colloid Interface Sci. 2011, 356 557-65.
  59. [14] Rugen-Penkalla, N.; Klapper, M.; Mullen, K., Macromolecules 2012, 45 2301-2311.
  60. [15] Yuan, W.; Guo, W.; Zou, H.; Ren, J., Polym. Chem. 2013.
  61. [16] Zhang, X.; Boisse, S.; Bui, C.; Albouy, P.-A.; Brulet, A.; Li, M.-H.; Rieger, J.; Charleux, B., Soft Matter 2012, 8 1130-1141.
  62. [17] Jia, L.; Albouy, P. A.; Di Cicco, A.; Cao, A.; Li, M. H., Polymer 2011, 52 2565-2575.
  63. [18] Wang, Y.; Zhang, B.; He, X.; Wang, J. W., Colloid Polym Sci 2007, 285 1077-1084.
  64. [23] Dukhin, A.S. and Goetz, P.J., Elsevier 2002.
  65. [24]http://nissannews.com/en-US/nissan/usa/releases/nissan-develops-first-self-cleaning-car-prototype
  66. [25] Iyer, P.K.; Beck, J.B.B.; Weder, C.; Rowan, S.J., Chem. Comm. 2005, 319-321. [26] Burnworth, M.; Mendez, J.D., Schroeter, M.; Rowan, S.J.; Weder, C., Macromolecules 2008, 41, 2157-2163.
  67. [27] Burnworth, M.; Knapton, D.; Rowan, S.J.; Weder, C., J. Inorg. Organomet. Polym. Mat. 2007, 17, 40, 91-103.
  68. [30] Yamada, Y. M. A.; Sarkar, S. M.; Uozumi, Y., J. Am. Chem. Soc. 2012, 134, 3190−3198
  69. [32] Reggelin, M.; Doerr, S.; Klussmann, M.; Schultz, M.; Holbach, M., Proc. Natl. Acad. Sci. USA 2004, 101 5461-6.
  70. [34] Bazzicalupi, C.; Bencini, A.; Bianchi, A.; Danesi, A.; Faggi, E.; Giorgi, C.; Santarelli, S.; Valtancoli, B., Coord. Chem. Rev. 2008, 252 1052-1068.
  71. [35] Roy, A. S.; Biswas, M. K.; Weyhermuller, T.; Ghosh, P., Dalton transactions 2011, 40, 146-55.
  72. [37] Stevens, M. P., Polymer chemistry. Oxford University Press New York, 1990.
  73. [39] Kato, M.; Kamigaito, M.; Sawamoto, M.; Higashimura, T. Macromolecules 1995, 28, 1721.
  74. [41] Hawker, C. J.; Bosman, A. W.; Harth, E. Chem. Rev. 2001, 101, 3661.
  75. [49] David, G.; Boyer, C.; Tonnar, J.; Ameduri, B.; Lacroix-Desmazes, P.; Boutevin, B. Chem. Rev. 2006, 106, 3936.
  76. [51] Chiefari, J.; Chong, Y. K.; Ercole, F.; Krstina, J.; Jeffery, J.; Le, T. P. T.; Mayadunne, R. T. A.; Meijs, G. F.; Moad, C. L.; Moad, G.; Rizzardo, E.; Thang, S. H. Macromolecules 1998, 31, 5559.
  77. [52] Moad, G.; Rizzardo, E.; Thang, S. H. Aust J. Chem. 2005, 58, 379.
  78. [53] Ting, S. R. S.; Granville, A. M.; Quémener, D.; Davis, T. P.; Stenzel, M. H.; Barner-Kowollik, C. Aust. J. Chem. 2007, 60, 405.
  79. [54] Postma, A.; Davis, T. P.; Li, G.; Moad, G.; O'Shea, M. S. Macromolecules 2006, 39, 5307.
  80. [55] Moad, G.; Rizzardo, E.; Thang, S. H. Aust. J. Chem. 2006, 59, 669.
  81. [58]Mueller, A. H. E.; Yan, D.; Litvinenko, G.; Zhuang, R.; Dong, H. Macromolecules 1995, 28, 7335.
  82. [59] Hawker, C. J.; Bosman, A. W.; Harth, E., Chem. Rev. 2001, 101 3661-3688.
  83. [60] Sciannamea, V.; Jerome, R.; Detrembleur, C., Chem. Rev. 2008, 108 1104-1126.
  84. [61] Nicolas, J.; Charleux, B.; Guerret, O.; Magnet, S., Angewandte Chemie 2004, 43 6186-9.
  85. [65] Wang, J. S.; Matyjaszewski, K., J. Am. Chem. Soc. 1995, 117 5614-5615.
  86. [66] Mazurowski, M.; Gallei, M.; Li, J.; Didzoleit, H.; Stühn, B.; Rehahn, M., Macromolecules 2012, 45 8970-8981.
  87. [67] Moad, G.; Rizzardo, E.; Thang, S. H., Aust. J. Chem. 2005, 58 379-410.
  88. [69] Chiefari, J.; YK Chong; Ercole, F.; Krstina, J.; Jeffery, J.; Le, T. P. T.; Mayadunne, R. T. A.; Meijs, G. F.; Moad, C. L.; Moad, G., Macromolecules 1998, 31 5559-5562.
  89. [71] Schilli, C. M.; Zhang, M.; Rizzardo, E.; Thang, S. H.; YK Chong; Edwards, K.; Karlsson, G.; Müller, A. H. E., Macromolecules 2004, 37 7861-7866
  90. [72] Wayland, B. B.; Poszmik, G.; Mukerjee, S. L.; Fryd, M. J. Am. Chem. Soc. 1994, 116, 7943.
  91. [73] Arvanitopoulos, L. D.; Greuel, M. P.; Harwood, H. J. Polym. Prepr. 1994, 208, 402.
  92. [74]Wayland, B. B.; Basickes, L.; Mukerjee, S.; Wei, M. L.; Fryd, M. Macromolecules 1997, 30, 8109.
  93. [76] Debuigne, A.; Poli, R.; Jerome, C.; Jerome, R.; Detrembleur, C. Prog. Polym. Sci. 2009, 34, 211.
  94. [77] Peng, C. H.; Scricco, J.; Li, S.; Fryd, M.; Wayland, B. B. Macromolecules 2008, 41, 2368.
  95. [78] Liao, C.-M.; Hsu, C.-C.; Wang, F.-S.; Wayland, B. B.; Peng, C.-H., Polym. Chem. 2013, 4 3098-3104.
  96. [79] Hsu, C.-S.; Yang, T.-Y.; Peng, C.-H., Polymer Chemistry 2014, 5, 3867.
  97. [82] Armor, J. N., Applied Catalysis B: Environmental 1992, 1, 221-256.
  98. [84] Liu, Z.; Sun, D. D.; Guo, P.; Leckie, J. O., Nano letters 2007, 7, 1081-1085.
  99. [85] Miyaura, N.; Suzuki, A., Chem. Commun. 1979, 866.
  100. [86] Kitamura O.; Sako S.; Udzu T.; Tsutsui A.; Maegawa T.; Monguchi Y.; Sajiki H., Chem. Commun. 2007, 5069
  101. [88] MacQuarrie S.; Nohair B.; Horton J. H.; Kaliaguine S.; Crudden C. M., J. Phys. Chem. C 2010, 114 57
  102. [90] Lee D. H.; Kim J. H.; Jun B. H.; Kang H.; Park J.; Lee Y. S., Org. Lett. 2008, 10 1609
  103. [92] Gamez P.; Arends I. W. C. E.; Sheldon R. A.; Reedijk, J. Adv. Synth. Catal. 2004, 346 805.
  104. [95] Faglioni F.; Blanco M.; Goddard A.W.; Saunders D., J. Phys. Chem. B 2002,
  105. 106 1714-1721
  106. [96] Debuigne, A.; Caille, J. R.; Jerome, R., Angew. Chem. 2005, 117 1125-1128.
  107. [98] de Groot, G. W.; Santonicola, M. G.; Sugihara, K.; Zambelli, T.; Reimhult, E.; Vörös, J.; Vancso, G. J., ACS Appl. Mater. Interfaces 2013, 5 1400-1407.
  108. [100] Díaz, A.; Mosby, B. M.; Bakhmutov, V. I.; Martí, A. A.; Batteas, J. D.; Clearfield, A., Chem. Mater. 2013, 25 723-728.
  109. [102] Xiong, Z.; Peng, B.; Han, X.; Peng, C.; Liu, H.; Hu, Y., J. Colloid Interface Sci. 2011, 356 557-65.
  110. [103] Li, L.; Xing, X.; Liu, Z., Journal of Applied Polymer Science 2012, 124 1128-1136.
  111. [104] Choi, I.; Suntivich, R.; Plamper, F. A.; Synatschke, C. V.; Muller, A. H.; Tsukruk, V. V., J. Am. Chem. Soc. 2011, 133 9592-606.
  112. [106] Fujii, S.; Aono, K.; Suzaki, M.; Hamasaki, S.; Yusa, S.; Nakamura, Y., Macromolecules 2012, 45 2863-2873.
  113. [107] Li, Y.; Lokitz, B. S.; McCormick, C. L., Macromolecules 2006, 39 81-89.
  114. [108] Smith, A. E.; Xu, X.; Abell, T. U.; Kirkland, S. E.; Hensarling, R. M.; McCormick, C. L., Macromolecules 2009, 42 2958-2964.
  115. [111] Debuigne, A.; Caille, J. R.; Jerome, R., Macromolecules 2005, 38 5452-5458.
  116. [112] Wayland, B. B.; Peng, C. H.; Xuefeng, F.; Zhi, L.; Fryd, M., Macromolecules 2006, 39 8219-8222.
  117. [113] Peng, C. H.; Fryd, M.; Wayland, B. B., Macromolecules 2007, 40 6814-6819.
  118. [115] O'Reilly, E. J.; Dennany, L.; Griffith, D.; Moser, F.; Keyes, T. E.; Forster, R. J., Phys. Chem. Chem. Phys. 2011, 13 7095-7101.
  119. [116] Reggelin, M.; Doerr, S.; Klussmann, M.; Schultz, M.; Holbach, M., Proc. Natl. Acad. Sci. USA 2004, 101 5461-6.
  120. [118] Peeler, J. C.; Woodman, B. F.; Averick, S.; Miyake-Stoner, S. J.; Stokes, A. L.; Hess, K. R.; Matyjaszewski, K.; Mehl, R. A., J. Am. Chem. Soc. 2010, 132 13575-13577.
  121. [119] Melendez, J.; North, M.; Villuendas, P.; Young, C., Dalton Trans. 2011, 40 3885-3902.