Title

鋁線氧化熱推進引擎之噴火嘴開發及氧化熱推動力之量測分析

Translated Titles

Development of spitfire nozzle for Al-oxidation-energy powered engine and study on propulsion forces from Al-oxidation and fuel combustion

Authors

李彥均

Key Words

鋁線引擎 ; 電弧汽化 ; 固態燃料線 ; 引擎噴火嘴 ; 燃料氧化熱比較

PublicationName

清華大學材料科學工程學系學位論文

Volume or Term/Year and Month of Publication

2014年

Academic Degree Category

碩士

Advisor

葉均蔚;謝光前

Content Language

繁體中文

Chinese Abstract

本研究的目標為開發不以傳統汽柴油而以固態鋁線作為燃料的引擎,由於每克鋁的氧化熱約為汽柴油的七成,每毫升為2.17倍,不產生二氧化碳,且產生氧化鋁可經電解回收重複使用,所以此引擎的開發甚具未來性。 為了解以鋁線取代傳統燃料的可行性,本研究對金屬線材及汽油燃料在0.5公升定容容器內進行燃燒爆炸,測量其壓力對時間變化曲線;結果顯示5356鋁合金線汽化及氧化確實可以提升容器內部氣壓,而與液態燃料相比,燃燒時間於50-70 ms時,兩者效率相近。 此外本實驗以二行程引擎為試驗,以接觸式起弧進行鋁線氧化爆炸。操作時,鋁線由噴火嘴中心經石墨杯噴火口垂直送向往復運動活塞表面的突出電極,鋁線於上死點與突起電極將引發電弧及汽化,進而氧化爆炸,其中石墨杯的設計目的是為了侷限電弧的熱量以增進鋁線線頭的汽化及氧化。經不同設計的噴火嘴做測試,結果顯示此一機構確實能使鋁線在上死點瞬間汽化及氧化爆炸的效果,但發現仍存在兩項主要缺點:1.電弧力常使杯中的鋁液濺出液滴,進而接觸不良,影響連續爆炸運作;2.靠近點火處的鋁線受熱膨脹與通道會產生咬住現象,使送線送線被迫停止。因此,此兩項缺點成為未來首需克服的問題。此外,本研究對引擎排氣口收集的粉末進行產物分析,結果證實純鋁線的汽化及氧化產生粒徑10到數百nm的球狀γ-氧化鋁,而5356合金線材則產生粒徑相似的球狀γ-氧化鋁及尖晶石氧化鋁鎂。

Topic Category 工學院 > 材料科學工程學系
工程學 > 工程學總論
Reference
  1. [1] 王建舜, "鋁線氧化熱推進引擎之鋁線汽化、燃燒、生成物及機制," 國立清華大學材料科學與工程研究所碩士論文, 2012.
    連結:
  2. [2] 林昌羿, "金屬氧化熱推進引擎之固態燃料線與噴火嘴開發研究," 國立清華大學材料科學與工程研究所碩士論文, 2013.
    連結:
  3. [3] A. Andreasen, "Hydrogen storage materials with focus on main group I-II elements," Materials Research Department Technical University of Denmark, 2005.
    連結:
  4. [6] Y. P. Raizer, Gas Discharge Physics: Springer-Verlag, 1991.
    連結:
  5. [8] S. Rhee and E. Kannateyasibu, " Analysis of arc pressure effect on metal transfer in gas-metal arc-welding," Journal of Applied Physics, vol. 70, pp. 5068-5075, 1991.
    連結:
  6. [9] J. C. Amson, "Lorentz force in molten tip of an arc electrode," British Journal of Applied Physics, vol. 16, pp. 1169-1179, 1965.
    連結:
  7. [10] C. J. Allum, " Metal transfer in arc-welding as a varicose instability .1. varicose instabilities in a current-carrying liquid cylinder with surface-charge," Journal of Physics D-Applied Physics, vol. 18, pp. 1431-1446, 1985.
    連結:
  8. [11] C. J. Allum, " Metal transfer in arc-welding as a varicose instability .2. development of model for arc-welding," Journal of Physics D-Applied Physics, vol. 18, pp. 1447-1468, 1985.
    連結:
  9. [12] A. Y. Park, S. R. Kim, M. A. Hammad, and C. D. Yoo, "Modification of pinch instability theory for analysis of spray mode in GMAW," Journal of Physics D-Applied Physics, vol. 42, 2009.
    連結:
  10. [13] A. Scotti, V. Ponomarev, and W. Lucas, "A scientific application oriented classification for metal transfer modes in GMA welding," Journal of Materials Processing Technology, vol. 212, pp. 1406-1413, 2012.
    連結:
  11. [14] C. Chazelas, J. F. Coudert, J. Jarrige, and P. Fauchais, "Synthesis of ultra fine particles by plasma transferred arc: Influence of anode material on particle properties," Journal of the European Ceramic Society, vol. 26, pp. 3499-3507, 2006.
    連結:
  12. [15] S. M. Oh and D. W. Park, "Preparation of ultra-fine alumina powders by D. C. plasma jet," Korean Journal of Chemical Engineering, vol. 17, pp. 299-303, 2000.
    連結:
  13. [16] S. Ishihara, H. Suematsu, T. Nakayama, T. Suzuki, and K. Niihara, "Synthesis of nanosized alumina powders by pulsed wire discharge in air flow atmosphere," Ceramics International, vol. 38, pp. 4477-4484, 2012.
    連結:
  14. [18] M. K. King, "Aluminum combustion in a solid rocket motor environment," Proceedings of the Combustion Institute, vol. 32, pp. 2107-2114, 2009.
    連結:
  15. [19] E. B. Washburn, J. A. Webb, and M. W. Beckstead, "The simulation of the combustion of micrometer-sized aluminum particles with oxygen and carbon dioxide," Combustion and Flame, vol. 157, pp. 540-545, 2010.
    連結:
  16. [20] S. Gallier, F. Sibe, and O. Orlandi, "Combustion response of an aluminum droplet burning in air," Proceedings of the Combustion Institute, vol. 33, pp. 1949-1956, 2011.
    連結:
  17. [22] S. Bao, K. Tang, A. Kvithyld, T. Engh, and M. Tangstad, "Wetting of pure aluminium on graphite, SiC and Al2O3 in aluminium filtration," Transactions of Nonferrous Metals Society of China, vol. 22, pp. 1930-1938, 2012.
    連結:
  18. [24] A. A. Desoky, Y. A. Abdelghafar, and R. M. Elbadrawy, " Hydrogen, propane and gasoline laminar flame development in a spherical vessel," International Journal of Hydrogen Energy, vol. 15, pp. 895-905, 1990.
    連結:
  19. [25] J. A. A. Yamin, "Comparative study using hydrogen and gasoline as fuels: Combustion duration effect," International Journal of Energy Research, vol. 30, pp. 1175-1187, 2006.
    連結:
  20. [4] 周長彬、蘇程昱、蔡丕椿、郭央諶, "銲接學," ed: 全華, 2008.
  21. [5] 徐初雄、陳寶齡, "初級電焊工," pp. 59-97, 2001.
  22. [7] 鄭宜庭、黃石生, 弧焊電源: 機械工業出版社, 1987.
  23. [17] W. M. T. AG. (1988). The CSIRO thermochemistry system.
  24. [21] K. Landry, S. Kalogeropoulou, and N. Eustathopoulos, "Wettability of carbon by aluminum and aluminum alloys," Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, vol. 254, pp. 99-111, 1998.
  25. [23] ASM Metals Handbook vol. 3: ASM Internationl, 1992.
Times Cited
  1. 陳宗奇(2015)。利用電弧汽化法製作氧化鋁粉末及利用鋁線氧化熱推進引擎可行性之探討。清華大學材料科學工程學系學位論文。2015。1-141。