透過您的圖書館登入
IP:3.16.218.62
  • 學位論文

利用還原氧化石墨烯及奈米銀線製備高性能可撓曲透明導電膜之研究

High performance flexible transparent conductive films based on reduced graphene oxides and silver nanowires

指導教授 : 戴念華
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本研究使用單一製程,製備一具有奈米銀線(AgNWs)和p型摻雜還原氧化石墨烯(p-rGO)的新型複合導電奈米材料,並具備均勻且分散性良好的特性。將此複合溶液塗佈在聚對苯二甲酸乙二酯(PET)基板上,可得到高性能的透明導電薄膜(TCFs),並具備可彎曲的性質。本研究發現鑑於p型摻雜還原氧化石墨烯的添加,不僅可以橋接未接觸的AgNWs,還可以提供更多電洞載子,並降低AgNWs線與線之間的接觸電阻,在不降低TCFs透光度的情況下,p-rGO可以有效增加導電效果。此外p-rGO也可牢靠的將AgNWs固定在基板上,因而提升AgNWs和基板之間的附著力。本實驗將此複合導電奈米材料塗佈在PET基板上製備TCFs,其最佳光電表現可達94.68%(在可見光波550 nm)的透光性與25.0 ohm/sq的片電阻值。此外將此TCFs經過曲率半徑為5 mm的彎曲測試,以及各經過1000次的伸張與壓縮的彎曲耐久度測試,此TCFs的片電阻值皆沒有顯著的上升,表示本TCFs可應用於可撓曲電子產品上。研究顯示以本複合導電奈米材料製備的TCFs是未來光電產業中取代現有透明導電材料的一個絕佳選項。

並列摘要


This work demonstrates an one-step process to synthesize uniformly dispersed hybrid nanomaterial containing silver nanowires (AgNWs) and p-type reduced graphene (p-rGO). The hybrid nanomaterial was coated onto a polyethylene terephthalate (PET) substrate to prepare high performance flexible transparent conductive films (TCFs). The p-rGO plays the role of bridging discrete AgNWs, providing more electron holes, and lowering the resistance of the contacted AgNWs, which enhances the electrical conductivity without sacrificing too much transparence of the TCFs. In addition, the p-rGO also improves the adhesion between AgNWs and substrate by covering the AgNWs on substrate tightly. The study shows that coating of the hybrid nanomaterials on the PET substrate demonstrates exceptional optoelectronic properties with a transmittance of 94.68% (at a wavelength of 550 nm) and a sheet resistance of 25.0 ohm/sq. Furthermore, no significant variation in electric resistance can be detected even though the film was subjected to a bend loading with a radius of curvature of 5.0 mm or the film was loaded with a reciprocal tension or compression for 1000 cycles. The study shows that the fabricated flexible TCFs have the potential to replace indium tin oxide film in the optoelectronic industry.

參考文獻


24. Hung, W. C.; Sheu, T. K.; Wang, M. A.; Kou, S. W.; Su, C. ITO thin film: from development and application to preparation and characterization. The Chinese Chem. Soc. 2005, 63, 409-418.
54. Jiang, P.; Li, S. Y.; Xie, S.-S.; Gao, Y.; Song, L. Machinable long PVP-stabilized silver nanowires. Chemistry – A European Journal 2004, 10, 4817-4821.
1. Lien, S. Y. Characterization and optimization of ITO thin films for application in heterojunction silicon solar cells. Thin Solid Films 2010, 518, S10-S13.
2. Suzuki, Y.; Niino, F.; Katoh, K. Low-resistivity ITO films by dc arc discharge ion plating for high duty LCDs. Journal of Non-Crystalline Solids 1997, 218, 30-34.
3. Tak, Y.-H.; Kim, K. B.; Park, H. G.; Lee, K. H.; Lee, J. R. Criteria for ITO (indium–tin-oxide) thin film as the bottom electrode of an organic light emitting diode. Thin Solid Films 2002, 411, 12-16.

延伸閱讀