透過您的圖書館登入
IP:18.118.254.94
  • 學位論文

真空製程有機及鈣鈦鑛太陽能電池之元件與光學研究

Device and Optical Engineering for Vacuum Deposited Organic and Perovskite Solar Cells

指導教授 : 林皓武
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本篇論文研究以真空蒸鍍製程之有機及鈣鈦鑛太陽能電池之光學與元件結構對其元件表現之影響。 首先,第一部份分別介紹了真空蒸鍍有機小分子與鈣鈦鑛太陽能電池的發展現況,接著分別簡介其理論及工作機制。 論文的第二部份,我們針對真空蒸鍍有機小分子太陽能電池中之各種性質,包括光學常數、分子定向與排列、薄膜形態、載子傳輸、元件動力學、元件表現以及其中的關聯等進行系統性的研究。第二章描述CuPc薄膜表現出的單軸光學不等向性,其光軸方向垂直於基板表面;而CuPc與C60的混合層則表現出較弱的光學不等向性。在第三章中我們揭露了DBP與C60的混合比為1:2時,其平面混合異質接面結構元件有最佳的元件表現,是由於其具有適當的晶粒大小、部份連接的受子晶粒、緊密排列且平行於基板方向的施子分子等良好特性。在第四章中,使用兩種不同類型(施子-受子、受子-施子-受子)的小分子製作成的元件皆具有不錯的元件表現,其能量轉換效率分別為4.2%與3.8%。 論文的第三部份,我們展示了一個創新的鈣鈦鑛太陽能電池製作方法,並透過光學模擬的方式進一步對元件結構進行優化,實際製作出的鈣鈦鑛太陽能電池顯示了高達15.4%的卓越效率。至於光學模擬的部份,我們的計算結果表示經過適當的元件結構設計,鈣鈦鑛太陽能電池在不加入抗反射層及散射層的情況下,能量轉換效率可達到20%。在與銅銦鎵硒薄膜共同製作成為串接式太陽能電池後效率更可望達到29%。

關鍵字

太陽能電池 有機 鈣鈦鑛

並列摘要


In this thesis, I focus on the optical and device engineering of vacuum deposited organic and perovskite solar cells. In the first part of this thesis, I reviewed the development of vacuum deposited organic and perovskite solar cells, followed by the theory and working mechanisms of these two different solar cells. In the second part, I systematic studied the properties of vacuum deposited small molecule organic solar cells (SMOSCs), such as optical constants, molecular orientation, carrier transport and the correlation of the morphology, molecular stacking, dynamic and device performance. Chapter 2 described the uniaxial optical anisotropy with the optical axis perpendicular to the surface normal in CuPc neat film and the decreasing degree of anisotropy in CuPc:C60 mixed layer. In chapter 3, I revealed that DBP:C60 (1:2) PMHJ devices exhibited a superior performance due to their promising advantages including preferable domain sizes, partially interconnected acceptor grains and close packing donor molecules with horizontal orientation. In chapter 4, SMOSCs utilizing novel D-A and A-D-A type molecules as donors were fabricated and characterized and they exhibited promising power conversion efficiencies (PCEs) of 4.2% and 3.8%, respectively. In the third part, I demonstrated a novel vacuum sequential deposited method to fabricate the high quality perovskite thin films, and further optimized the device structures of perovskite solar cells by optical simulation. The practical perovskite solar cells delivered a remarkable performance of PCE as high as 15.4%. Our calculations also suggested that PCEs of up to 20% and 29% are feasible without any antireflection and light scattering structures in single and perovskite/CIGS tandem cells given a proper device structure design.

並列關鍵字

solar cells organic perovskite

參考文獻


[115] C.-C. Hsiao, A.-E. Hsiao, S.-A. Chen, Advanced Materials 2008, 20, 1982.
[2] S. B. Darling, F. You, RSC Advances 2013, 3, 17633.
[4] H.-Y. Chen, J. Hou, S. Zhang, Y. Liang, G. Yang, Y. Yang, L. Yu, Y. Wu, G. Li, Nat Photon 2009, 3, 649.
[9] D. Qian, W. Ma, Z. Li, X. Guo, S. Zhang, L. Ye, H. Ade, Z. a. Tan, J. Hou, Journal of the American Chemical Society 2013, 135, 8464.
[12] Q. Chen, H. Zhou, Z. Hong, S. Luo, H. S. Duan, H. H. Wang, Y. Liu, G. Li, Y. Yang, Journal of the American Chemical Society 2014, 136, 622.

延伸閱讀