Title

微流道血型檢驗晶片之製作及光學感測分析

Translated Titles

Fabrication of Microfluidic Blood Typing Chip and Its Optical Assay Analysis

Authors

游宏偉

Key Words

微流道 ; 血型辨識 ; 光學感測 ; Microfluidic ; Blood Typing ; Optical Assay Analysis

PublicationName

中原大學機械工程研究所學位論文

Volume or Term/Year and Month of Publication

2016年

Academic Degree Category

碩士

Advisor

張耀仁

Content Language

繁體中文

Chinese Abstract

本研究提出微流體血型檢驗晶片,依靠流道中的毛細力、表面張力與重力等驅動血液與試劑,不需要其他外部驅動設備。晶片製作是以光學微影製程為基礎製作模仁,再使用PDMS翻模最後與玻璃基板結合製作出微流道晶片。為了使血液反應量測順利,反應完成後需加入振盪器減少反應結果的沉澱時間。流道的反應槽下方以V型設計,同時在最下面設計了通氣井幫助氣體排出以減少氣泡產生。血液試驗使用MP法 (Manual Polybrene)為基礎,但不同之處為MP法中使用的為離心後3%稀釋的紅血球,但在本實驗中使用稀釋過的全血來進行反應,最後根據光強度的變化來檢測出反應結果。研究結果顯示,透過使用微流道晶片有利於進行血液反應,無需施加額外的動力驅動液體流動,也能有效的幫助血液反應沈積,在量測結果方面,研究發現使用稀釋過的全血與標準血球一樣,可以測量出相同的趨勢,也歸納出本微流道血型檢驗晶片的最佳量測位置。

English Abstract

This study presents a novel microfluidic blood typing chip. The blood sample and reagents are driven by the capillary force, surface tension and gravity, without requiring any apparatuses for fluid manipulation. Chip fabrication was based on the photolithography process to produce a mold, followed by casting PDMS into the mold. Finally, the PDMD layer was bonded with a glass substrate. For blood typing measurement, an oscillator was used to reduce the precipitation time of blood agglutination. At the bottom of reaction vessel, a V-shape was designed. In addition, a vent connecting to the V-shaped vessel was used to release gas and prevent the occurrence of bubbles. Bioassay was based on the test protocol of manual polybrene (MP) technique. However, we used diluted whole blood in our experiments instead of centrifuged 3%-diluted red blood cells (RBC), which is used in the MP method. After the assay, the light intensity was detected to determine the result of blood typing.The experimental results show in this proposed chip the sample and reagents can be manipulated for the blood reaction without extra forces. The blood agglutination can be effectively precipitated. The diluted whole blood gives the same assay result as the centrifuged 3%-diluted RBC. We also concluded the optimal position for measurement in this proposed chip.

Topic Category 工學院 > 機械工程研究所
工程學 > 機械工程
Reference
  1. [2] L. Yobas, D. M. Durand, G. G. Skebe, F. J. Lisy, and M. A. Huff, “A Novel Integrable Microvalve for Refreshable Braille Display System” Journal of Microelectromechanical Systems, vol. 12, NO. 3, pp.252-263, 2003.
    連結:
  2. [4] R. H. Liu, J. Bonanno, J. Yang, R. Lenigk, and P. Grodzinski, “Single-use, thermally actuated paraffin valves for microfluidic applications” Sensors and Actuators B 98, pp. 328–336, 2004.
    連結:
  3. [5] H. Hartshorne,C.J. Backhouse, and W. E. Lee, “Ferrofluid-based microchip pump and valve” Sensors and Actuators B 99, pp.592–600, 2004.
    連結:
  4. [7] H. Cho, H.Y. Kim, J. Y. Kang, and T. S. Kim, “How the capillary burst microvalve works,” Journal of Colloid and Interface Science 306 , pp. 379–385, 2007.
    連結:
  5. [9] T.S. Leu, and P.Y. Chang, “Pressure barrier of capillary stop valves in micro sample separators,” Sensors and Actuators A 115, pp. 508–515, 2004.
    連結:
  6. [10] Gli`ere, and C. Delattre, “Modeling and fabrication of capillary stop valves for planar microfluidic systems,” Sensors and Actuators A: Physical Volumes,pp. 130–131 , pp. 601–608, 2004.
    連結:
  7. [11] W. W. Liou, Y. Peng, and P. E. Parker, “Analytical modeling of capillary flow in tubes of nonuniform cross section,” Journal of Colloid and Interface Science 333, pp.389–399, 2009.
    連結:
  8. [12] K. H. Chung, J. W. Hong, D.S. Lee, and H. C. Yoon, “Microfluidic chip accomplishing self-fluid replacement using only capillary force and its bioanalytical application,” Analytica Chimica Acta 585 , pp.1-10, 2007.
    連結:
  9. [14] V.Siljegovic, N. Milicevic, and P. Griss, “Passive programmable flow control in capillary force driven microfluidic networks,” Solid-State Sensors, Actuators and Microsystems ,vol. 2, pp.1565 - 1568, 2005.
    連結:
  10. [15] D.R. Walt, “Ubiquitous Sensors: When Will They Be Here?,” ACS Nano vol. 3, pp 2876–2880, 2009.
    連結:
  11. [16] 林育德, “毛細力牽引試劑晶片之製作” , 中原大學碩士論文,2016.
    連結:
  12. [17] A.-B.Wang, P.-H. Fang, Y.C. Su, Y.-W. Hsieh, C.-W. Lin, Y.-T. Chen, and Y.-C. Hsu, “A novel lab-on-a-chip design by sequential capillary-gravitational valves for urinary creatinine detection” Sensors and Actuators B: Chemical Volume 222, pp.721–727, 2016.
    連結:
  13. [18] W.R. Premasiri, J.C. Lee, and L.D. Ziegler, “Surface-Enhanced Raman Scattering of Whole Human Blood, Blood Plasma, and Red Blood Cells: Cellular Processes and Bioanalytical Sensing,” The Journal of Physical Chemistry B, pp.9376-9386, 2012.
    連結:
  14. [19] C. Andreou, M.R. Hoonejani, M.R. Barmi, M. Moskovits, and C.D. Meinhart, “Rapid Detection of Drugs of Abuse in Saliva Using Surface Enhanced Raman Spectroscopy and Microfluidics,” ACS Nano vol.7, pp.7157-7164, 2013.
    連結:
  15. [20] T. R. Kline, M. K. Runyon, M. Pothiawala, and R. F. Ismagilov, “ABO, D Blood Typing and Subtyping Using Plug-Based Microfluidics” Anal. Chem., 80, pp.6190–6197. 2008.
    連結:
  16. [21] A. Nilghaz, L. Zhang, M. Li, D.R. Ballerini, and W. Shen, “Understanding Thread Properties for Red Blood Cell Antigen Assays: Weak ABO Blood Typing” ACS Applied Materials & Interfaces, pp.22209-22215. 2014.
    連結:
  17. [22] Y. K. Suh, and S. Kang, “A Review on Mixing in Microfluidics” Micromachines, pp.82-111, 2010.
    連結:
  18. [23] Y.-J. Chang, W. H.-S. Chang, and Y.-T. Lin, “Detection of RBC Agglutination in Blood Typing Test Using Integrated Light-eye-Technology (iLeyeT)” IEEE ISBB, 2014.
    連結:
  19. [1] M. Madou, J. Zoval, G. Jia, H. Kido, J. Kim, and N. Kim, “Lab on a CD,” Annu. Rev. Biomed. Eng.vol. 8, pp.601–628, 2006.
  20. [3] H.Q. Li, D.C. Roberts, J.L. Steyn, K.T. Turner, O. Yaglioglu, N.W. Hagood, S.M. Spearing, and M.A. Schmidt, “Fabrication of a high frequency piezoelectric microvalve,” Sensors and Actuators A 111 , pp. 51–56, 2004.
  21. [6] P.E.Man, C.H. Mastrangelo, M.A. Burns, and D. T. Burke,“Microfabricated capillarity-driven stop valve and sample injector” Micro Electro Mechanical Systems. MEMS 98. Proceedings, pp. 45-50, 1998.
  22. [8] M. Chew, W. Teo, L. Xie, C.S. Premachandran, W. H. Wong, D. Xu, and Q. Yao, “Study of a Capillary Force Driven Passive Valve for a Microfluidic Package,” Electronics Packaging Technology Conference, EPTC '06. 8th, pp. 448-453, 2006.
  23. [13] J. Melin, N. Roxhed, G. Gimenez, P. Griss, W. Van Der Wijngaart, and G. Stemme, “A liquid-triggered liquid microvalve for on-chip flow control,” Sensors and Actuators B 100 ,pp.463–468, 2007.