Title

應用大數據於教學與學習之研究

Translated Titles

The Application of Big Data for Teaching and Learning

DOI

10.6840/CYCU.2015.00055

Authors

陳旭暉

Key Words

商業智慧與分析 ; 商業智慧與教育 ; 巨量資料 ; 資料倉儲 ; Business intelligence and Analytics ; Business intelligence and Education ; Big data ; Data warehouse

PublicationName

中原大學資訊管理研究所學位論文

Volume or Term/Year and Month of Publication

2015年

Academic Degree Category

碩士

Advisor

皮世明

Content Language

繁體中文

Chinese Abstract

近幾年來,巨量資料正在進入教育的各個層面中,運用教育資料探勘將凌亂的資料變成有用的資訊,使得教育不在只是你聽我講的互動,巨量資料將顛覆傳統教學模式。學校已經擁有足夠且大量的學生資料,而且學校也是重視學生的學習成效,在巨量分析前,都需要有一個完善能夠儲存這些龐大資料的資料庫,但學校因為資料分散儲存、資料格式不一致和各單位對資料定義上的不同,導致資料蒐集與整合上出現困難,如何解決資料上取得不易及資料品質低落的問題成了一大挑戰。本研究設計一個如何在不影響個案學校業務執行的情況下,解決學校資料分散儲存、資料格式不一致、各單位資料定義上的差異和資料品質低落問題的資料倉儲建置流程。本研究將針對這個問題,重新設計一個學生資料倉儲流程,此流程分為基於學生觀點為基礎的學生資料倉儲、探索資料源且建立同步機制和依照分析需求建置資料超市三個階段。此流程將會實作於個案學校,透過實作的方式來驗證此流程的可行性,且整理在每個階段過程中所遇到的困難和應該注意的事項,來作為學生資料整合的一個參考依據。

English Abstract

Within big data analysis growing, using educational data mining will cluster unstructured data into useful information. Also, it influences the traditional mode of teaching and has a disruptive innovation of education. Because of data source distributing and formatting inconsistencies, it’s becoming difficulties of data collection and integration for educational data mining. However, we need a solution to resolve simple data obtained problem and low quality data issue has become a challenge. In this study, we proposed student data warehouse processes which solved school data issue of dispersed storage, data format inconsistent, different definitions of the data in each department and low quality data without affecting school business execution. This model has three stages for solving above disadvantages. First, construct data warehouse based on student view. Second, explore the data sources and build synchronization mechanisms. Finally, according to analysis demands building data mart. Those processes will implement in the school for case. Through those processes to verify this model’s feasibility, we supposed to aggregate difficulties and precautions at every stage of the process encountered, as an integrated reference for student data.

Topic Category 商學院 > 資訊管理研究所
社會科學 > 管理學
Reference
  1. Adomavicius, G., & Tuzhilin, A. (2005). Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. Knowledge and Data Engineering, IEEE Transactions on, 17(6), 734–749.
    連結:
  2. Aghabozorgi, S., Mahroeian, H., Dutt, A., Wah, T. Y., & Herawan, T. (2014). An Approachable Analytical Study on Big Educational Data Mining. In Computational Science and Its Applications–ICCSA 2014, Springer, (pp. 721–737).
    連結:
  3. Baker, R. S., & Yacef, K. (2009). The state of educational data mining in 2009: A review and future visions. JEDM-Journal of Educational Data Mining, 1(1), 3–17.
    連結:
  4. Bakshi, K. (2012). Considerations for big data: Architecture and approach. 2012 IEEE Aerospace Conference, 1–7.
    連結:
  5. Chaudhuri, S., Dayal, U., & Narasayya, V. (2011). An overview of business intelligence technology. Communications of the ACM, 54(8), 88–98.
    連結:
  6. Chen, H. (2009). AI, E-government, and Politics 2.0. Intelligent Systems, IEEE, 24(5), 64–86.
    連結:
  7. Chen, H., Chiang, R. H., & Storey, V. C. (2012). Business Intelligence and Analytics: From Big Data to Big Impact. MIS quarterly, 36(4), 1165–1188.
    連結:
  8. Clow, D. (2013). An overview of learning analytics. Teaching in Higher Education, 18(6), 683–695.
    連結:
  9. Cuzzocrea, A., Song, I.-Y., & Davis, K. C. (2011). Analytics over large-scale multidimensional data: the big data revolution! Proceedings of the ACM 14th international workshop on Data Warehousing and OLAP, 101–104 .
    連結:
  10. Doan, A., Ramakrishnan, R., & Halevy, A. Y. (2011). Crowdsourcing systems on the world-wide web. Communications of the ACM, 54(4), 86–96.
    連結:
  11. Easton, G. (2010). Critical realism in case study research. Industrial Marketing Management, 39(1), 118–128.
    連結:
  12. Eisenhardt, K. M. (1989). Building theories from case study research. Academy of management review, 14(4), 532–550.
    連結:
  13. Fathi, R. (2014). The Effect of Entrepreneurship Education on Business Intelligence of Management Students of Islamic Azad University of Elam. International Letters of Social and Humanistic Sciences, (19), 24–34.
    連結:
  14. Hajlaoui, J. E., & Hamdani, N. (2014). Active data warehouse: Review, challenges and issues. 2014 World Symposium on Computer Applications & Research (WSCAR), 1–6.
    連結:
  15. Kurniawan, Y., & Halim, E. (2013). Use data warehouse and data mining to predict student academic performance in schools: A case study (perspective application and benefits). 2013 IEEE International Conference on Teaching, Assessment and Learning for Engineering (TALE), 98–103.
    連結:
  16. Manjunath, T. N., Hegadi, R. S., Umesh, I. M., & Ravikumar, G. K. (2012). Realistic Analysis of Data ware housing and Datamining Application in Education Domain. International Journal of Machine learning and computing, 2(4), 419-422.
    連結:
  17. Masters, A., & Michael, K. (2007). Lend me your arms: The use and implications of humancentric RFID. Electronic Commerce Research and Applications, 6(1), 29–39.
    連結:
  18. Prinsloo, P., & Slade, S. (2014). Educational triage in open distance learning: Walking a moral tightrope. The International Review of Research in Open and Distance Learning, 15(4), 306-331.
    連結:
  19. Sun, L., Hu, M., Ren, K., & Ren, M. (2013). Present Situation and Prospect of Data Warehouse Architecture under the Background of Big Data. IEEE 2013 International Conference on Information Science and Cloud Computing Companion (ISCC-C), 529–535.
    連結:
  20. Wang, F., Lee, N., Hu, J., Sun, J., Ebadollahi, S., & Laine, A. F. (2013). A Framework for Mining Signatures from Event Sequences and Its Applications in Healthcare Data. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 35(2), 272–285.
    連結:
  21. Watson, H. J., & Wixom, B. H. (2007). The current state of business intelligence. Computer, 40(9), 96–99.
    連結:
  22. Zhang, Z., Li, W., Wu, Z., & Tan, W. (2012). Towards an Automata-Based Semantic Web Services Composition Method in Context-Aware Environment. In International Conference on Services Computing (SCC), 2012 IEEE Ninth (pp. 320–327).
    連結:
  23. 英文部分:
  24. Berta, D.-A. (2012). Business Intelligence in education. In Conference proceedings of「 eLearning and Software for Education」(eLSE), 62–66.
  25. Cortez, P., & Silva, A. M. G. (2008). Using data mining to predict secondary school student. In the Proceedings of 5th Annual Future Business Technology Conference, 5-12.
  26. Ferguson, M. (2012). Architecting a big data platform for analytics. A Whitepaper Prepared for IBM.
  27. Lee, Y., Madnick, S., Wang, R., Wang, F., & Zhang, H. (2014). A Cubic Framework for the Chief Data Officer: Succeeding in a World of Big Data. MIS Quarterly Executive, 13(1), 1-13.
  28. Manjunath, T. N., Hegadi, R. S., & Ravikumar, G. K. (2010). Analysis of Data Quality Aspects in DataWarehouse Systems. IJCSIT) International Journal of Computer Science and Information Technologies, 2(1), 477–485.
  29. Mattingly, K. D., Rice, M. C., & Berge, Z. L. (2012). Learning analytics as a tool for closing the assessment loop in higher education. Knowledge Management & E-Learning: An International Journal (KM&EL), 4(3), 236–247.
  30. Mcafee, A., Brynjolfsson, E., Davenport, T. H., Patil, D. J., & Barton, D. (2012). Big Data. The management revolution. Harvard Bus Rev, 90(10), 61–67.
  31. Patterson, D. A. (2008). Technical Perspective: The Data Center is the Computer. Communications of the ACM, 51(1), 105.
  32. Ray, S. (2013). Big Data it Education. In GRAVITY Issue. Retrieved From http://www.glgravity.org/pdf/issue20v2.pdf
  33. Sagiroglu, S., & Sinanc, D. (2013). Big data: A review. IEEE 2013 International Conference on Collaboration Technologies and Systems (CTS), 42–47.
  34. The Economist . (2010). “The Data Deluge,” Special Report on Managing Information, Technology Section, February 25.
  35. Thusoo, A., Sarma, J. S., Jain, N., Shao, Z., Chakka, P., Zhang, N., … Murthy, R. (2010). Hive-a petabyte scale data warehouse using hadoop. 2010 IEEE 26th International Conference on Data Engineering (ICDE), 996–1005.
  36. Wu, X., Kumar, V., Quinlan, J. R., Ghosh, J., Yang, Q., Motoda, H., … others. (2008). Top 10 algorithms in data mining. Knowledge and Information Systems, 14(1), 1–37.
  37. Yin, R. K.(2013). Case study research: Design and methods. Sage publications.
  38. Zaslavsky, A., Perera, C., & Georgakopoulos, D. (2013). Sensing as a service and big data. In International Conference on Advances in Cloud Computing (ACC- 2012), 21–29.
  39. 中文部分:
  40. 林秀姿 (2014)。教部投入Big data 6大學明年試辦。聯合新聞網。取自 http://mag.udn.com/mag/edu/storypage.jsp?f_ART_ID=519175。
  41. 林俊宏(譯) (2013)。大數據(原作者:Viktor Mayer-Schonberger & Kenneth Cukier)。台北市: 遠見天下文化。
  42. 林俊宏(譯) (2014)。大數據-教育篇(原作者:Viktor Mayer-Schonberger & Kenneth Cukier)。台北市: 遠見天下文化。
  43. 胡世忠 (2013)。雲端時代的殺手級應用。台北市:天下雜誌。