Title

新型聚醯胺複合膜應用於醇類脫水-­膜製備與鑑定

Translated Titles

Novel Polyamide Thin-film Composite Membrane for Alcohol Solution Dehydration -Membrane Fabrication and Characterization

DOI

10.6840/cycu202100606

Authors

黃亭翊

Key Words

滲透蒸發 ; 醇類脫水 ; 界面聚合 ; 二胺單體 ; 聚醚醯亞胺 ; pervaporation ; alcohol solution dehydration ; interfacial polymerization ; diamine ; polyetherimide

PublicationName

中原大學化學工程研究所學位論文

Volume or Term/Year and Month of Publication

2021年

Academic Degree Category

碩士

Advisor

李魁然

Content Language

繁體中文

Chinese Abstract

本研究以無螺旋結構的4,4'-((丙烷-2,2-二基雙(4,1-亞苯基))雙氧基)二苯胺(4,4'-((propane-2,2-diylbis(4,1-phenylene))bis(oxy))dianiline, PPDA)和4,4'-((亞甲基雙(4,1-亞苯基))雙氧基)二苯胺(4,4'-((methylenebis(4,1-phenylene))bis(oxy))dianiline, MPDA)、具螺旋結構的6,6'-雙(4-氨基苯甲氧基)-4,4,4', 4', 7,7'-六甲基-2,2'-螺旋二色滿(6,6’-bis(4-aminopheoxy)-4,4,4’,4’,7,7’-hexamethyl-2,2’-spirobichroman, SBC)三種化學結構相異之高立體障礙二胺單體,與醯氯單體均苯三甲醯氯(trimesoyl chloride, TMC), 在聚醚醯亞胺(polyetherimide, PEI)非對稱基材膜表面進行界面聚合反應,製備一系列聚醯胺複合薄膜(PA/PEI composite membrane),應用於異丙醇水溶液之滲透蒸發分離程序。研究中利用全反射式傅立葉轉換紅外線光譜儀與X射線光電子能譜儀鑑定聚合層化學結構與組成變化、掃描式電子顯微鏡與原子力顯微鏡分析基材膜與PA/PEI複合膜表面與截面之結構形貌變化、水接觸角儀檢測薄膜表面親疏水性,期望與滲透蒸發分離效能有密切之關聯性。 研究發現基材膜表面孔隙度與對單體之親和性,影響聚合之反應性與聚醯胺選擇層之微結構變化。和其他高分子(PSf、PES)基材膜相比,PEI基材膜表面具有最大之孔隙度,在聚合過程中,使單體溶液擴散速度較其他基材膜快速,進而吸附更多單體於膜內。此外,PEI基材膜與單體之間有強氫鍵作用力,也會使單體較容易吸附於膜內,有利於聚合成較完整之選擇層。 研究發現不同化學結構單體之立體障礙會影響聚合時反應程度與聚醯胺選擇層結構變化,進而影響滲透蒸發效能。化學結構相異之聚醯胺複合薄膜具有不同的自由體積變化,滲透蒸發效能之通量排序,依序為SBC-TMC>PPDA-TMC>MPDA-TMC。以PPDA為單體可獲致較佳的分離效能,擁有較高PSI值。 研究中同時探討單體濃度與聚合條件對PA/PEI複合膜滲透蒸發效能之影響。PA/PEI複合膜於25OC進行70 wt% IPA水溶液滲透蒸發測試顯示,隨著PPDA單體濃度增加,透過通量先上升後下降,而透過端水濃度則先上升後下降。透過通量隨著TMC濃度上升,先下降後上升;透過端水濃度則先上升後下降。隨著基材膜浸漬胺單體溶液時間增加,透過端水濃度先上升後持平,而透過通量則為下降趨勢。當聚合時間上升時,透過端水濃度先上升後持平,而透過通量先下降後持平。隨著聚合溫度上升,透過端水濃度先上升後持平,而透過通量則為下降的趨勢。 根據以上複合膜效能之比較,此聚醯胺複合薄膜25℃下分離70 wt%異丙醇水溶液具有最理想分離效能製備條件為:PEI基材膜浸漬於0.75 wt% PPDA單體溶液中45分鐘,而後在50℃下與0.25 wt% TMC有機溶液接觸1小時進行聚合反應,其透過通量為705.546.7 g/m2h,透過端水濃度高於99.8 wt%。

English Abstract

In this study, polyamide (PA) thin film composite (TFC) membrane was fabricated by the interfacial polymerization between diamine and trimesoyl chloride (TMC) onto polyetherimide (PEI) support. Three novel diamines were used in the preparation of PA/PEI TFC membrane, namely 4,4'-((propane-2,2-diylbis(4,1-phenylene))bis(oxy))dianiline(PPDA), 4,4'-((methylene bis(4,1-phenylene))bis(oxy))dianiline (MPDA), which two without spiro structure and 6,6’-bis(4-aminopheoxy)-4,4,4’,4’,7,7’-hexamethyl-2,2’-spirobichroman (SBC), which monomer with spiro structure, Chemical structure and composition were validated using Attenuated total reflectance–Fourier transform infrared (ATR-FTIR) and x-ray photoelectron spectroscopy (XPS) analysis, the monomer without spiro structure have higher crosslink degree due to less steric hindrance. According to field emission scanning electron microscope (FESEM) images, PPDA-TMC/PEI and MPDA-TMC/PEI had a thin and smooth PA layer. However, due to the sterically hindrance structure, SBC-TMC PA did not form well on the top of PEI support. Compared with PEI support, the novel PA TFC membrane had more hydrophilic surface. At 25°C, the pervaporation performance of 70 wt% aqueous isopropanol solution through the prepared PA TFC membranes increased in the following order: SBC-TMC/PEI < MPDA-TMC/PEI < PPDA-TMC/PEI. At the optimal interfacial polymerization condition between MPDA and TMC: monomer immersion time 45 min and reaction time 1 hr, PPDA-TMC/PEI TFC membrane can exhibit high separation flux of 705 (g/m2 h) with a desirable separation factor of 15694, due to the dialkyl group which in the middle of structure create pathway to enhance the performance. Therefore, PPDA-TMC/PEI TFC membrane is a promising membrane for dehydration of alcohol solution.

Topic Category 工學院 > 化學工程研究所
工程學 > 化學工業
Reference
  1. [1] G. Liu, W. Jin, N. Xu, Graphene-based membranes, Chemical Engineering
  2. Journal, 44 (2015) 5016-5030.
  3. [2] S.H. Huang, W.S. Hung, D.J. Liaw, C.H. Lo, W.C. Chao, C.C. Hu, C.L. Li,
  4. K.R. Lee, J.Y. Lai, Interfacially polymerized thin-film composite polyamide
  5. membranes: Effects of annealing processes on pervaporative dehydration of
  6. aqueous alcohol solutions, Separation and Purification Technology, 72 (2010)
  7. 40-47.
  8. [3] E. Obotey Ezugbe, S. Rathilal, Membrane technologies in wastewater
  9. treatment: A review, Membranes, 10 (2020) 89.
  10. [4] Y. Zhang, J.R. Vallin, J.K. Sahoo, F. Gao, B.W. Boudouris, M.J. Webber, W.A.
  11. Phillip, High-affinity detection and capture of heavy metal contaminants using
  12. block polymer composite membranes, ACS Central Science, 4 (2018) 1697-
  13. 1707.
  14. [5] G. Jyoti, A. Keshav, J. Anandkumar, Review on pervaporation: theory,
  15. membrane performance, and application to intensification of esterification
  16. reaction, Journal of Engineering, 2015 (2015) 1-24.
  17. [6] H. Strathmann, Membrane separation processes: current relevance and future
  18. opportunities, AIChE Journal, 47 (2001) 1077-1087.
  19. [7] W. Yuan, Y.S. Lin, W. Yang, Molecular sieving MFI-Type Zeolite membranes
  20. for pervaporation separation of xylene isomers, Journal of the American
  21. Chemical Society, 126 (2004) 4776-4777.
  22. [8] R. Castro Muñoz, J. Buera González, Ó.d.l. Iglesia, F. Galiano, V. Fíla, M.
  23. Malankowska, C. Rubio, A. Figoli, C. Téllez, J. Coronas, Towards the
  24. dehydration of ethanol using pervaporation cross-linked poly(vinyl
  25. alcohol)/graphene oxide membranes, Journal of Membrane Science, 582
  26. (2019) 423-434.
  27. [9] Y. Rao, F. Ni, Y. Sun, B. Zhu, Z. Zhou, Z. Yao, Efficient recovery of the volatile
  28. aroma components from blackberry juice using a ZIF-8/PDMS hybrid
  29. 83
  30. membrane, Separation and Purification Technology, 230 (2020) 115844.
  31. [10] B. Qiu, Y. Wang, S. Fan, J. Liu, S. Jian, Y. Qin, Z. Xiao, X. Tang, W. Wang,
  32. Ethanol mass transfer during pervaporation with PDMS membrane based on
  33. solution-diffusion model considering concentration polarization, Separation
  34. and Purification Technology, 220 (2019) 276-282.
  35. [11] P.A. Kobbr, Pervaporation, perstillation and percrystallization, Journal of the
  36. American Chemical Society, 39 (1917) 944-948.
  37. [12] R.J.L. Robert C. Binning, E.C.M. Joseph F. Jennings, Separation of liquid
  38. mixtures by permeation, Industrial Engineering Chemistry Research, 53
  39. (1961) 45-50.
  40. [13] A. Ito, K. Watanabe, Y. Feng, Swollen-dry-layer model for the pervaporation
  41. of ethanol-water solution through hydrophilic membranes, Separation Science
  42. and Technology, 30 (1995) 3045-3060.
  43. [14] C. Zhu, M. Liu, W. Xu, Separation of ethanol-water mixtures by
  44. pervaporation-membrane separation process, Desalination, 62 (1987) 299-
  45. 313.
  46. [15] U. Sander, P. Soukup, Design and operation of a pervaporation plant for
  47. ethanol dehydration, Journal of Membrane Science, 36 (1988) 463-475.
  48. [16] P. Aptel, N Challard, J. Cuny, J. Neel, Application of the pervaporation
  49. process to separate azeotropic mixtures, Journal of Membrane Science, 1
  50. (1976) 271-287.
  51. [17] G.F. Tusel, H.E.A. Bruschke, Use of pervaporation systems in the chemical
  52. Industry, Desalination, 53 (1985) 327-338.
  53. [18] A. Jonquières, R. Clément, P. Lochon, J. Néel, M. Dresch, B. Chrétien,
  54. Industrial state-of-the-art of pervaporation and vapour permeation in the
  55. western countries, Journal of Membrane Science, 206 (2002) 87-117.
  56. [19] L.Y. Jiang, Y. Wang, T.S. Chung, X.Y. Qiao, J.Y. Lai, Polyimides membranes
  57. for pervaporation and biofuels separation, Progress in Polymer Science, 34
  58. (2009) 1135-1160.
  59. [20] Y.M. Xu, N.L. Le, J. Zuo, T.S. Chung, Aromatic polyimide and crosslinked
  60. 84
  61. thermally rearranged poly(benzoxazole-co-imide) membranes for isopropanol
  62. dehydration via pervaporation, Journal of Membrane Science, 499 (2016)
  63. 317-325.
  64. [21] G. Zhang, H. Cheng, P. Su, X. Zhang, J. Zheng, Y. Lu, Q. Liu, PIM-1/PDMS
  65. hybrid pervaporation membrane for high-efficiency separation of n-butanolwater mixture under low concentration, Separation and Purification
  66. Technology, 216 (2019) 83-91.
  67. [22] G. Polotskaya, A. Pulyalina, M. Goikhman, I. Podeshvo, V. Rostovtseva, S.
  68. Shugurov, I. Gofman, N. Saprykina, N. Gulii, N. Loretsyan, A. Toikka, Novel
  69. polyheteroarylene membranes for separation of methanolHexane mixture by
  70. pervaporation, Scientific Reports, 8 (2018) 17849.
  71. [23] S. Mandal, V.G. Pangarkar, Separation of methanol–benzene and methanol–
  72. toluene mixtures by pervaporation: effects of thermodynamics and structural
  73. phenomenon, Journal of Membrane Science, 201 (2002) 175-190.
  74. [24] F. Peng, C. Hu, Z. Jiang, Novel ploy(vinyl alcohol)/carbon nanotube hybrid
  75. membranes for pervaporation separation of benzene/cyclohexane mixtures,
  76. Journal of Membrane Science, 297 (2007) 236-242.
  77. [25] H. Zhan, J. Zhang, D. Luo, X. Li, Reducing concentration polarization in
  78. hollow-fibre membranes, Membrane Technology, 2004 (2004) 5-9.
  79. [26] C. Li, W. Sun, Z. Lu, X. Ao, S. Li, Ceramic nanocomposite membranes and
  80. membrane fouling: A review, Water Research 175 (2020) 115674.
  81. [27] Y. Wang, H. Jin, Q. Ma, K. Mo, H. Mao, A. Feldhoff, X. Cao, Y. Li, F. Pan,
  82. Z. Jiang, A MOF glass membrane for gas separation, Angewandte Chemie, 59
  83. (2020) 4365-4369.
  84. [28] S. Zhang, F. Yang, Y. Liu, X. Zhang, Y. Yamada, K. Furukawa, Performance
  85. of a metallic membrane bioreactor treating simulated distillery wastewater at
  86. temperatures of 30 to 45°C, Desalination, 194 (2006) 146-155.
  87. [29] H. Bux, F. Liang, Y. Li, J. Cravillon, M. Wiebcke, J. Caro, Zeolitic
  88. imidazolate framework membrane with molecular sieving properties by
  89. microwave-assisted solvothermal synthesis, Journal of the American
  90. 85
  91. Chemical Society, 131 (2009) 16000-16001.
  92. [30] J.A. Idarraga-Mora, A.S. Childress, P.S. Friedel, D.A. Ladner, A.M. Rao, S.M.
  93. Husson, Role of nanocomposite support stiffness on TFC membrane water
  94. permeance, Membranes, 8 (2018) 1-19.
  95. [31] L. Li, M. Chen, Y. Dong, X. Dong, S. Cerneaux, S. Hampshire, J. Cao, L.
  96. Zhu, Z. Zhu, J. Liu, A low-cost alumina-mullite composite hollow fiber
  97. ceramic membrane fabricated via phase-inversion and sintering method,
  98. Journal of the European Ceramic Society, 36 (2016) 2057-2066.
  99. [32] S. Wu, C. Lei, Q. Cai, R. Xu, B. Hu, W. Shi, X. Peng, Study of structure and
  100. properties of polypropylene microporous membrane by hot stretching,
  101. Polymer Bulletin, 71 (2014) 2205-2217.
  102. [33] K.M. Kim, N.G. Park, K.S. Ryu, S.H. Chang, Characteristics of PVDFHFP/TiO2 composite membrane electrolytes prepared by phase inversion and
  103. conventional casting methods, Electrochimica Acta, 51 (2006) 5636-5644.
  104. [34] Y.J. Wang, Z.P. Zhao, Z.Y. Xi, S.Y. Yan, Microporous polypropylene
  105. membrane prepared via TIPS using environment-friendly binary diluents and
  106. its VMD performance, Journal of Membrane Science, 548 (2018) 332-344.
  107. [35] K. Xu, Y. Cai, N.T. Hassankiadeh, Y. Cheng, X. Li, X. Wang, Z. Wang, E.
  108. Drioli, Z. Cui, ECTFE membrane fabrication via TIPS method using ATBC
  109. diluent for vacuum membrane distillation, Desalination, 456 (2019) 13-22.
  110. [36] H.Y. Zhao, Y.M. Cao, X.L. Ding, M.Q. Zhou, J.H. Liu, Q. Yuan,
  111. Poly(ethylene oxide) induced cross-linking modification of Matrimid
  112. membranes for selective separation of CO2, Journal of Membrane Science,
  113. 320 (2008) 179-184.
  114. [37] G. Huang, A.P. Isfahani, A. Muchtar, K. Sakurai, B.B. Shrestha, D. Qin, D.
  115. Yamaguchi, E. Sivaniah, B. Ghalei, Pebax/ionic liquid modified graphene
  116. oxide mixed matrix membranes for enhanced CO2 capture, Journal of
  117. Membrane Science, 565 (2018) 370-379.
  118. [38] H.F.M. Austria, R.L.G. Lecaros, W.S. Hung, L.L. Tayo, C.C. Hu, H.A. Tsai,
  119. K.R. Lee, J.Y. Lai, Investigation of salt penetration mechanism in hydrolyzed
  120. 86
  121. polyacrylonitrile asymmetric membranes for pervaporation desalination,
  122. Desalination, 463 (2019) 32-39.
  123. [39] J.F. Blanco, J. Sublet, Q.T. Nguyen, P. Schaetzel, Formation and morphology
  124. studies of different polysulfones-based membranes made by wet phase
  125. inversion process, Journal of Membrane Science, 283 (2006) 27-37.
  126. [40] A.K. Itta, H.H. Tseng, M.Y. Wey, Effect of dry/wet-phase inversion method
  127. on fabricating polyetherimide-derived CMS membrane for H2/N2 separation,
  128. International Journal of Hydrogen Energy, 35 (2010) 1650-1658.
  129. [41] I. Pinnau, W.J. Koros, Structures and gas separation properties of asymmetric
  130. polysulfone membranes made by dry, wet, and dry/ wet phase inversion,
  131. Journal of Applied Polymer Science, 43 (1991) 1491-1502.
  132. [42] W.J. Lau, A.F. Ismail, Progress in interfacial polymerization technique on
  133. composite membrane preparation, in: 2011 2nd International Conference on
  134. Environmental Engineering and Applications (ICEEA 2011), International
  135. Proceedings of Chemical, Biological and Environmental Engineering
  136. (IPCBEE), 17 (2011) 173-177.
  137. [43] P.W. Morgan, S.L. Kwolek, Interfacial polycondensation. 11. Fundamentals
  138. of polymer formation at liquid interfaces, Journal of Polymer Science, 6 (1959)
  139. 299-327.
  140. [44] S. Basu, M. Maes, A. Cano-Odena, L. Alaerts, D.E. De Vos, I.F.J.
  141. Vankelecom, Solvent resistant nanofiltration (SRNF) membranes based on
  142. metal-organic frameworks, Journal of Membrane Science, 344 (2009) 190-
  143. 198.
  144. [45] D. Karisma, G. Febrianto, D. Mangindaan, Polyetherimide thin film
  145. composite (PEI-TFC) membranes for nanofiltration treatment of dyes
  146. wastewater, IOP Conference Series: Earth and Environmental Science, 195
  147. (2018) 012057.
  148. [46] M. Namvar Mahboub, M. Pakizeh, Development of a novel thin film
  149. composite membrane by interfacial polymerization on
  150. polyetherimide/modified SiO2 support for organic solvent nanofiltration,
  151. 87
  152. Separation and Purification Technology, 119 (2013) 35-45.
  153. [47] Z. Jiang, J. Miao, Y. He, K. Tu, S. Chen, R. Zhang, L. Zhang, H. Yang, A
  154. novel positively charged composite nanofiltration membrane based on
  155. polyethyleneimine with a tunable active layer structure developed via
  156. interfacial polymerization, RSC Advances, 9 (2019) 10796-10806.
  157. [48] Y.Y. Su, X. Yan, Y. Chen, X.J. Guo, X.F. Chen, W.Z. Lang, Facile fabrication
  158. of COF-LZU1/PES composite membrane via interfacial polymerization on
  159. microfiltration substrate for dye/salt separation, Journal of Membrane Science,
  160. 618 (2021) 118706.
  161. [49] R. Wang, X. Shi, A. Xiao, W. Zhou, Y. Wang, Interfacial polymerization of
  162. covalent organic frameworks (COFs) on polymeric substrates for molecular
  163. separations, Journal of Membrane Science, 566 (2018) 197-204.
  164. [50] M. Fathizadeh, A. Aroujalian, A. Raisi, Effect of lag time in interfacial
  165. polymerization on polyamide composite membrane with different hydrophilic
  166. sub layers, Desalination, 284 (2012) 32-41.
  167. [51] Y. Zeng, L. Wang, L. Zhang, J.Q. Yu, An acid resistant nanofiltration
  168. membrane prepared from a precursor of poly(s-triazine-amine) by interfacial
  169. polymerization, Journal of Membrane Science, 546 (2018) 225-233.
  170. [52] P.S. Singh, S.V. Joshi, J.J. Trivedi, C.V. Devmurari, A.P. Rao, P.K. Ghosh,
  171. Probing the structural variations of thin film composite RO membranes
  172. obtained by coating polyamide over polysulfone membranes of different pore
  173. dimensions, Journal of Membrane Science, 278 (2006) 19-25.
  174. [53] Y. Zhang, N.L. Le, T.S. Chung, Y. Wang, Thin-film composite membranes
  175. with modified polyvinylidene fluoride substrate for ethanol dehydration via
  176. pervaporation, Chemical Engineering Science, 118 (2014) 173-183.
  177. [54] K. Rajendran, A. Rajalakshmi, Synthesis and characterization of soluble
  178. polyamides from 2,8-diaminodibenzofuran and various diacids, Malaya
  179. Journal of Matematik, 2 (2020) 1084-1086.
  180. [55] Y. Zhu, H. Chen, Pervaporation separation and pervaporation-esterification
  181. coupling using crosslinked PVA composite catalytic membranes on porous
  182. 88
  183. ceramic plate, Journal of Membrane Science, 138 (1998) 123-134.
  184. [56] P. Meng, C. Chen, L. Yu, J. Li, W. Jiang, Crosslinking of PVA pervaporation
  185. membrane by maleic acid, Tsinghua Science and Techology, 5 (2000) 172-
  186. 175.
  187. [57] C.K. Yeom, K.H. Lee, Characterization of sodium alginate membrane
  188. crosslinked with glutaraldehyde in pervaporation separation, Journal of
  189. Applied Polymer Science, 67 (1997) 209-219.
  190. [58] S. Kalyani, B. Smitha, S. Sridhar, A. Krishnaiah, Pervaporation separation of
  191. ethanol–water mixtures through sodium alginate membranes, Desalination,
  192. 229 (2008) 68-81.
  193. [59] M. Ghazali, M. Nawawi, R.Y.M. Huang, Pervaporation dehydration of
  194. isopropanol with chitosan membranes, Journal of Membrane Science, 124
  195. (1997) 53-62.
  196. [60] J. Ge, Y. Cui, Y. Yan, W. Jiang, The effect of structure on pervaporation of
  197. chitosan membrane, Journal of Membrane Science, 165 (2000) 75-81.
  198. [61] Y.J. Fu, C.L. Lai, J.T. Chen, C.T. Liu, S.H. Huang, W.S. Hung, C.C. Hu, K.R.
  199. Lee, Hydrophobic composite membranes for separating of water–alcohol
  200. mixture by pervaporation at high temperature, Chemical Engineering Science,
  201. 111 (2014) 203-210.
  202. [62] X. Qiao, T.S. Chung, Diamine modification of P84 polyimide membranes for
  203. pervaporation dehydration of isopropanol, AIChE Journal, 52 (2006) 3462-
  204. 3472.
  205. [63] L.T. Rozelle, J.E. Cadotte, K.E. Cobian, C.V. Kopp Jr, Nonpolysaccharide
  206. membranes for reverse osmosis: NS-100 membranes. in: S. Sourirajan (Ed.),
  207. Reverse Osmosis and Synthetic Membranes, (1977) 249-261.
  208. [64] R.J. Petersen, Composite reverse osmosis and nanofiltration membranes,
  209. Journal of Membrane Science, 82 (1993) 81-150.
  210. [65] M.B.M.Y. Ang, V. Jr Lau, Y.L. Ji, S.H. Huang, Q.F. An, A.R. Caparanga, H.A.
  211. Tsai, W.S. Hung, C.C. Hu, K.R. Lee, J.Y. Lai, Correlating PSf support
  212. physicochemical properties with the formation of piperazine-based polyamide
  213. 89
  214. and evaluating the resultant nanofiltration membrane performance, Polymers,
  215. 9 (2017) 505.
  216. [66] G. Zhang, H. Meng, S. Ji, Hydrolysis differences of polyacrylonitrile support
  217. membrane and its influences on polyacrylonitrile-based membrane
  218. performance, Desalination, 242 (2009) 313-324.
  219. [67] R. Han, S. Zhang, L. Hu, S. Guan, X. Jian, Preparation and characterization
  220. of thermally stable poly(piperazine amide)/PPBES composite nanofiltration
  221. membrane, Journal of Membrane Science, 370 (2011) 91-96.
  222. [68] J. Chen, J. Li, X. Zhan, X. Han, C. Chen, Effect of PEG additives on
  223. properties and morphologies of polyetherimide membranes prepared by phase
  224. inversion, Frontiers of Chemical Engineering in China, 4 (2010) 300-306.
  225. [69] S.H. Huang, Y.Y. Liu, Y.H. Huang, K.S. Liao, C.C. Hu, K.R. Lee, J.Y. Lai,
  226. Study on characterization and pervaporation performance of interfacially
  227. polymerized polyamide thin-film composite membranes for dehydrating
  228. tetrahydrofuran, Journal of Membrane Science, 470 (2014) 411-420.
  229. [70] J. Zuo, Y. Wang, T.S. Chung, Novel organic–inorganic thin film composite
  230. membranes with separation performance surpassing ceramic membranes for
  231. isopropanol dehydration, Journal of Membrane Science, 433 (2013) 60-71.
  232. [71] X. Chen, G. Liu, H. Zhang, Y. Fan, Fabrication of graphene oxide composite
  233. membranes and their application for pervaporation dehydration of butanol,
  234. Chinese Journal of Chemical Engineering, 23 (2015) 1102-1109.
  235. [72] G.M. Shi, T.S. Chung, Thin film composite membranes on ceramic for
  236. pervaporation dehydration of isopropanol, Journal of Membrane Science, 448
  237. (2013) 34-43.
  238. [73] A.V. Klinov, R.R. Akberov, A.R. Fazlyev, M.I. Farakhov, Experimental
  239. investigation and modeling through using the solution-diffusion concept of
  240. pervaporation dehydration of ethanol and isopropanol by ceramic membranes
  241. HybSi, Journal of Membrane Science, 524 (2017) 321-333.
  242. [74] M.S. Jyothi, K.R. Reddy, K. Soontarapa, S. Naveen, A.V. Raghu, R.V.
  243. Kulkarni, D.P. Suhas, N.P. Shetti, M.N. Nadagouda, T.M. Aminabhavi,
  244. 90
  245. Membranes for dehydration of alcohols via pervaporation, Journal of
  246. Environmental Management 242 (2019) 415-429.
  247. [75] D. Anjali Devi, B. Smitha, S. Sridhar, T.M. Aminabhavi, Pervaporation
  248. separation of isopropanol/water mixtures through crosslinked chitosan
  249. membranes, Journal of Membrane Science, 262 (2005) 91-99.
  250. [76] Q.F. An, M.B.M.Y. Ang, Y.H. Huang, S.H. Huang, Y.H. Chiao, C.L. Lai, H.A.
  251. Tsai, W.S. Hung, C.C. Hu, Y.P. Wu, K.R. Lee, Microstructural characterization
  252. and evaluation of pervaporation performance of thin-film composite
  253. membranes fabricated through interfacial polymerization on hydrolyzed
  254. polyacrylonitrile substrate, Journal of Membrane Science, 583 (2019) 31-39.
  255. [77] E.S. Kim, Y.J. Kim, Q. Yu, B. Deng, Preparation and characterization of
  256. polyamide thin-film composite (TFC) membranes on plasma-modified
  257. polyvinylidene fluoride (PVDF), Journal of Membrane Science, 344 (2009)
  258. 71-81.
  259. [78] N.W. Oh, J. Jegal, K.H. Lee, Preparation and characterization of
  260. nanofiltration composite membranes using polyacrylonitrile (PAN). II.
  261. preparation and characterization of polyamide composite membranes, Journal
  262. of Applied Polymer Science, 80 (2001) 2729-2736.
  263. [79] B.K. Chen, C.T. Su, M.C. Tseng, S.Y. Tsay, Preparation of polyetherimide
  264. nanocomposites with improved thermal,mechanical and dielectric properties,
  265. Polymer Bulletin, 57 (2006) 671-681.
  266. [80] D. Nasirian, I. Salahshoori, M. Sadeghi, N. Rashidi, M.
  267. Hassanzadeganroudsari, Investigation of the gas permeability properties from
  268. polysulfone/polyethylene glycol composite membrane, Polymer Bulletin, 77
  269. (2019) 5529-5552.
  270. [81] S. Zhu, M. Shi, S. Zhao, Z. Wang, J. Wang, S. Wang, Preparation and
  271. characterization of a polyethersulfone/polyaniline nanocomposite membrane
  272. for ultrafiltration and as a substrate for a gas separation membrane, RSC
  273. Advances, 5 (2015) 27211-27223.
  274. [82] M.B.M.Y. Ang, S.H. Huang, M.W. Chang, C.L. Lai, H.A. Tsai, W.S. Hung,
  275. 91
  276. C.C. Hu, K.R. Lee, Ultraviolet-initiated graft polymerization of acrylic acid
  277. onto thin-film polyamide surface for improved ethanol dehydration
  278. performance of pervaporation membranes, Separation and Purification
  279. Technology, 235 (2020) 116155.
  280. [83] M.B.M.Y. Ang, S.H. Huang, Y.C. Li, A.T.C. Cahatol, L.L. Tayo, W.S. Hung,
  281. H.A. Tsai, C.C. Hu, K.R. Lee, J.Y. Lai, High-performance thin-film composite
  282. polyetheramide membranes for the dehydration of tetrahydrofuran, Journal of
  283. Membrane Science, 611 (2020) 118373.
  284. [84] R.Y.M. Huang, N.R. Jaarvis, Separation of liquid mixtures by using polymer
  285. membranes. II. permeation of aqueous alcohol solutions through cellophane
  286. and Poly(viny1 Alcohol), Journal of Applied Polymer Science, 14 (1970)
  287. 2341-2356.
  288. [85] J.Y. Lee, J.S. Lee, J.H. Lee, High performance and thermally stable PDMS
  289. pervaporation membranes prepared using a phenyl-containing tri-functional
  290. crosslinker for n-butanol recovery, Separation and Purification Technology,
  291. 235 (2020) 116142.
  292. [86] W. Li, L. Lou, Y. Hai, C. Fu, J. Zhang, Polyamide thin film composite
  293. membrane using mixed amines of thiourea and m-phenylenediamine RSC
  294. Advances, 67 (2013) 54125–54132. .
  295. [87] X.W. Liu, Y. Cao, Y.X. Li, Z.L. Xu, Z. Li, M. Wang, X.H. Ma, Highperformance polyamide/ceramic hollow fiber TFC membranes with TiO2
  296. interlayer for pervaporation dehydration of isopropanol solution, Journal of
  297. Membrane Science, 576 (2019) 26-35.
  298. [88] W.F. Guo, T.S. Chung, Study and characterization of the hysteresis behavior
  299. of polyimide membranes in the thermal cycle process of pervaporation
  300. separation, Journal of Membrane Science, 253 (2005) 13-22.
  301. [89] C.L. Li, S.H. Huang, D.J. Liaw, K.R. Lee, J.Y. Lai, Interfacial polymerized
  302. thin-film composite membranes for pervaporation separation of aqueous
  303. isopropanol solution, Separation and Purification Technology, 62 (2008) 694-
  304. 701.
  305. 92
  306. [90] S.H. Huang, G.J. Jiang, D.J. Liaw, C.L. Li, C.C. Hu, K.R. Lee, J.Y. Lai,
  307. Effects of the polymerization and pervaporation operating conditions on the
  308. dehydration performance of interfacially polymerized thin-film composite
  309. membranes, Journal of Applied Polymer Science, 114 (2009) 1511-1522.
  310. [91] M.Y. Teng, K.R. Lee, S.C. Fan, D.J. Liaw, J. Huang, J.Y. Lai, Development
  311. of aromatic polyamide membranes for pervaporation and vapor permeation,
  312. Journal of Membrane Science, 164 (2000) 241-249.
  313. [92] M.B.M.Y. Ang, S.H. Huang, S.W. Wei, Y.H. Chiao, R.R. Aquino, W.S. Hung,
  314. H.A. Tsai, K.R. Lee, J.Y. Lai, Surface properties, free volume, and
  315. performance for thin-film composite pervaporation membranes fabricated
  316. through interfacial polymerization involving different organic solvents,
  317. Polymers, 12 (2020) 2326.
  318. [93] S.H. Huang, C.J. Hsu, D.J. Liaw, C.C. Hu, K.R. Lee, J.Y. Lai, Effect of
  319. chemical structures of amines on physicochemical properties of active layers
  320. and dehydration of isopropanol through interfacially polymerized thin-film
  321. composite membranes, Journal of Membrane Science, 307 (2008) 73-81.
  322. [94] R.Y.M. Huang, R. Pal, G.Y. Moon, Crosslinked chitosan composite
  323. membrane for the pervaporation dehydration of alcohol mixtures and
  324. enhancement of structural stability of chitosan/polysulfone composite
  325. membranes, Journal of Membrane Science 160 (1999) 17-30.
  326. [95] Y.L. Liu, C.H. Yu, K.R. Lee, J.Y. Lai, Chitosan/poly(tetrafluoroethylene)
  327. composite membranes using in pervaporation dehydration processes, Journal
  328. of Membrane Science, 287 (2007) 230-236.
  329. [96] X. Qiao, T.S. Chung, K.P. Pramoda, Fabrication and characterization of
  330. BTDA-TDI/MDI (P84) co-polyimide membranes for the pervaporation
  331. dehydration of isopropanol, Journal of Membrane Science, 264 (2005) 176-
  332. 189.
  333. [97] E. Halakoo, X. Feng, Layer-by-layer assembled membranes from graphene
  334. oxide and polyethyleneimine for ethanol and isopropanol dehydration,
  335. Chemical Engineering Science, 216 (2020) 115488.
  336. 93
  337. [98] J. Meier Haack, W. Lenk, D. Lehmann, K. Lunkwitz, Pervaporation
  338. separation ofwater/alcohol mixtures using composite membranes based on
  339. polyelectrolyte multilayer assemblies, Journal of Membrane Science 184
  340. (2001) 233-243.
  341. [99] Z. Zhu, X. Feng, A. Penlidis, Self-assembled nano-structured polyelectrolyte
  342. composite membranes for pervaporation, Materials Science and Engineering:
  343. C, 26 (2006) 1-8