透過您的圖書館登入
IP:3.21.231.245
  • 學位論文

以FPGA實現倒傳遞類神經網路並應用於肌電圖分類

EMG Classification using Artificial Neural Network Implement on FPGA

指導教授 : 徐良育
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


語言為人類溝通、表達思想最重要的能力。通常失去語言能力的人,簡稱聽障人士,皆因聽覺系統或發音系統發生障礙造成。在日常生活上,聽障人士僅能運用手語、唇語,或是利用紙筆作為溝通的工具。當聽障人士與正常人溝通時,便無法細膩的表現語意。至今,針對聽障人士仍無一個有效的輔具來改善溝通上的不便。另一方面,在臨床病理研究中,肌電訊號已廣泛應用在診斷肌肉性、神經性病變及設計控制義肢手部動作等;義肢控制的設計上,主要以類神經網路作為肌電訊號辨識處理的主要核心。因此,建構一可攜式的肌電訊號/語音轉換系統,消除聽障人士溝通上的困難,為本研究主要的動機。而研究的架構上,將以硬體電路實現辨識手語的類神經網路。 本研究的目的,是以倒傳遞神經網路作為肌電訊號(EMG)辨識系統的主軸,並實現在FPGA晶片上。研究中,先以Matlab軟體作為軟體程式驗證的環境,依據基本倒傳遞網路演算法並自行發展之General Back-propagation Neural Network(GBPN)網路,利用負梯度學習法則來完成學習效果。搭配本實驗室研發之七通道肌電訊號擷取系統,擷取手前臂肌電訊號,透過六種基本特徵植萃取處理,經正規化後送入神經網路作實際應用的模擬與測試。對照組的設計,為本研究室同步之實驗數據,針對十一種手部動作,可達90%以上辨識率。軟體實驗中,應用相同之網路架構測試GBPN,平均辨識率可達80%以上。 以軟體印證GBPN網路可行後,對於硬體線路的設計,首重執行的效率與所需的晶片面積。利用具有管線和單一指令多資料流特性的一維心縮式陣列,做為電路設計的基本概念。電路上將分為三部分,包含前向網路單元、權植修正單元與記憶體。 目前,GBPN受限於晶片面積不足的因素,完成FFN-BLOCK、RAM模組,功能上僅能應用於案例模式。經由功能上及時序上軟體模擬與印證下,GBPN可正確運作。此外,GBPN應用在肌電圖分類中,經有效選擇輸入資訊,其網路結構可大幅減少,使所需運算時間縮短為原先之50%。

並列摘要


Langue is the most important ability for human to communicate and express thoughts. Most of the time, hearing system or vocal organ obstacles cause the person to lose his ability to speak. These persons can make use of sign language, lip reading or paper and pen as tools to communicate with other person. However, person without special training cannot understand the sign language. Until now, there is still no effect auxiliary tool to assist hearing impaired person to communicate. On the other hand, the electromyogram (EMG) is used extensively on diagnosing muscular or nerve pathological disorder. Additionally, EMG is also used in the control of prosthesis. Within these applications, the artificial neural network (ANN) is commonly used as the core of EMG identification. In this study, a back-propagation neural network is realized on the FPGA chip that will be used in a multi-channel EMG system for hand gesture identification. First, a Matlab program is developed to test the general back-propagation neural network (GBPN). It is then realized on the FPGA chip. To put the emphasis on the throughput, the systolic architectures that have pipeline and parallel processing capability is used in the design of digital circuit. The digital circuit is divided into three parts, including feed-forward network unit (FFN-BLOCK), weight update unit (WUD-BLOCK) and memory (RAM). Due to the restriction of FPGA chip, only the FFN-BLOCK and memory parts are completed in this study. The GBPN software is tested with an average identification rate over 80%. On the other hand, the function and timing simulation of the FPGA circuit demonstrate that the GBPN hardware can function correctly. Additionally, the characteristic and redundancy of GBPN input are examined. It is found that with proper selection of inputs, the GBPN can perform comparable with only one-third of input.

參考文獻


[3] 陳建宇著,多電極手部動作辨識系統,中原大學碩士論文,Jun 2001。
[5] 林嘉興譯著,完整的VHDL使用者指引,美商麥格羅∙希爾國際股份有限公司(臺灣),2000。
[11] Xilinx, The Programmable Logic Data Book 2000, Xilinx, 2000.
[13] H.P. Huang, et al, “Development of a Myoelectric Discrimination System for a Multi-Degree Prosthetic Hand”, Proceedings of IEEE International Conference on Robotics and Automation, 1999.
[15] L.R. Lin and H.P. Huang, “Mechanism Design of A New Mutifingered Robot Hand”, Proceedings of IEEE International Conference on Robotics and Automation, 1996.

被引用紀錄


Wu, C. Y. (2004). 以FPGA開發手部動作辨識系統 之類神經網路晶片 [master's thesis, Chung Yuan Christian University]. Airiti Library. https://doi.org/10.6840/cycu200400644
王泓翔(2003)。都市多活動旅程之類神經網路模式建構及適應性分析〔碩士論文,中原大學〕。華藝線上圖書館。https://doi.org/10.6840/cycu200300559
杜翌群(2003)。以穩態小波結合PCA及ICA辨識手部動作肌電圖之評估〔碩士論文,中原大學〕。華藝線上圖書館。https://doi.org/10.6840/cycu200300424
江智勝(2002)。手部動作辨識語音系統之研究〔碩士論文,中原大學〕。華藝線上圖書館。https://doi.org/10.6840/cycu200200540
葛士豪(2006)。即時手部動作辨識系統之實現〔碩士論文,中原大學〕。華藝線上圖書館。https://doi.org/10.6840/CYCU.2006.00436

延伸閱讀