Translated Titles

Production Layout Optimization with Multi-Period Dynamic Demand and Multi-Row Cells



Key Words

多行佈置 ; 單元製造系統 ; 群組技術 ; 多期動態需求 ; Cellular Manufacturing Systems ; Multi-Row Layout ; Multi-Period Dynamic Demand ; Group Technology



Volume or Term/Year and Month of Publication


Academic Degree Category



饒 忻

Content Language


Chinese Abstract

在多樣少量的產品需求環境下,生產系統中,單元製造為一不錯之選擇。在單元製造的分群研究裡,先考量產品與機器的關連性,進而考量訂單及機器使用率,再來考量單元內與間的佈置;然而同時考量單元的形成與單元間的佈置是較少的,此現象引起本研究的動機。 本研究擬建構一多期動態訂單與多行單元形成之生產佈置最佳成本模式,在多期需求變動環境下,考慮零件單元間與單元內搬運成本、機器固定成本、製造成本及重置成本,求解過程同時考量零件與機器的群聚形成及製造單元間的佈置最佳化。另在製造單元數量3、4與5三個範例驗證比較過程中,皆得到較低成本的機台選擇及佈置結果。最後,本研究針對零件搬運成本、零件批量大小、機器固定成本、機器製造成本與機器可用時間等進行參數之敏感度分析。相信本研究的成果能做為工廠在變動訂單環境下,單元間佈置最佳化之參考。

English Abstract

Cellular manufacturing systems are one of well-known and efficient approaches for the production environment with high variety and low volume products. In the clustering research, people first consider the correlation between product and machine, then consider the order and machine utilization, and then intra-cell and inter-cell layout, but there are few researches to consider cell formation and inter-cell layout simultaneously. This research developed an optimization cost model of production layout with multi-period dynamic demand and multi-row. Under this dynamic demand environment, we considered intra-cell and inter-cell handling cost, machine fixed cost, machine manufacturing cost, and machine relocation cost. Besides, we verified the results in the case of three, four and five cells and got the lower cost of machine selection and layout, respectively. Finally, we had parameters sensitivity analysis with material handling cost, batch size, machine fixed cost, machine manufacturing cost, and machine available time. We believe that the results found in this study can be served as a reference for the optimization of inter-cell layout in the factory under the dynamic demand environment.

Topic Category 電機資訊學院 > 工業與系統工程研究所
工程學 > 工程學總論
  1. Angra, S., Sehgal, R., Noori, Z. S. (2008), “Cellular manufacturing—A time-based analysis to the layout problem”, International Journal of Production Economics, Vol. 112, No. 1, p. 427-438.
  2. Castillo, I., Peters, B. A. (2004), “Integrating design and production planning considerations in multi-bay manufacturing facility layout”, European Journal of Operational Research, Vol. 157, No. 3, p. 671-687.
  3. Caux, C., Bruniaux, R., Pierreval, H. (2000), “Cell formation with alternative process plans and machine capacity constraints: A new combined approach”, International of Production Economics, Vol. 64, No. 1-3, p. 279-284.
  4. Das, K., Lashkari, R. S., Sengupta, S. (2007), “Reliability consideration in the design and analysis of cellular manufacturing systems”, International Journal of Production Economics, Vol. 105, No. 1, p. 243-262.
  5. Defersha, F. M., Chen, M. (2006), “A comprehensive mathematical model for the design of cellular manufacturing systems”, International Journal of Production Economics, Vol. 103, No. 2, p. 767-783.
  6. Drira, A., Pierreval, H., Hajri-Gabouj, S. (2007), “Facility layout problems: A survey”, Annual Reviews in Control, Vol. 31, No. 2, p. 255-267.
  7. Kioon, S. A., Bulgak, A. A., Bektas, T. (2009), “Integrated cellular manufacturing systems design with production planning and dynamic system reconfiguration”, European Journal of Operational Research, Vol. 192, No. 2, p. 414-428.
  8. Mahdavi, I., Paydar, M. M., Solimanpur, M., Heidarzade, A. (2009), “Genetic algorithm approach for solving a cell formation problem in cellular manufacturing”, Expert Systems with Applications, Vol. 36, No. 3, p. 6598-6604.
  9. Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., Teller, E. (1953), “Equation of State Calculations by Fast Computing Machines”, Journal of Chemical Physics, Vol. 21, No. 6, p. 1087-1092.
  10. Nagi, R., Harhalakis, G., Proth, J. M. (1990), “Multiple routeings and capacity considerations in group technology applications”, International Journal of Production Research, Vol. 28, No. 12, p. 2243-2257.
  11. Papaioannou, G., Wilson, J. M. (2010), “The evolution of cell formation problem methodologies based on recent studies (1997-2008): Review and directions for future research”, European Journal of Operational Research, Vol. 206, No.3, p. 509-521.
  12. Pollai, V. M., Subbarao, K. (2008), “A A robust cellular manufacturing system design for dynamic part population using a genetic algorithm”, International Journal of Production Research, Vol. 46, No. 18, p. 5191-5210.
  13. Safaei, N., Saidi-Mehrabad, M., Jabal-Ameli, M. S. (2008), “A hybrid simulated annealing for solving an extended model of dynamic cellular manufacturing system”, European Journal of Operational Research, Vol. 185, No. 2, p. 563-592.
  14. Safaei, N., Tavakkoli-Moghaddam, R. (2009), “Integrated multi-period cell formation and subcontracting production planning in dynamic cellular manufacturing systems”, International Journal of Production Economics, Vol. 120, No. 2, p. 301-314.
  15. Seifoddini, H., Wolfe, P. M. (1986), “Application of Similarity Coefficient Method in GT”, IIE Transactions, Vol. 18, No. 3, p. 271-277.
  16. Singh, S. P., Sharma, R. R. K. (2006), “A review of different approaches to the facility layout problems”, International Journal of Advantage Manufacturing Technology, Vol. 30, No. 5-6, p. 425-433.
  17. Tavakkoli-Moghaddam, R., Javadian, N., Javadi, B., Safaei, N. (2007), “Design of a facility layout problem in cellular manufacturing systems with stochastic demands”, Applied Mathematics and Computation, Vol. 184, No. 2, p. 721-728.
  18. Wang, T.-Y., Wu, K.-B., Liu, Y.-W. (2001), “A simulated annealing algorithm for facility layout problems under variable demand in Cellular Manufacturing Systems” Computers in Industry, Vol. 46, No. 2, p. 181-188.
  19. Wemmerlov, U., Hyer, N. L. (1989), “Cellular manufacturing in the U.S. industry: a survey of users”, International Journal of Production Research, Vol. 27, No. 9, p. 1511-1530.
  20. Wicks, E. M., Reasor, R. J. (1999), “Designing cellular manufacturing systems with dynamic part populations”, IIE Transactions, Vol. 31, No. 1, p. 11-20.
  21. Wu, X.–D., Chu, C.–H., Wang, Y.–F., Yan, W. (2007), “A genetic algorithm for cellular manufacturing design and layout”, European Journal of Operational Research, Vol. 181, No. 1, p. 156-167.
  22. Chen, F. T. S., Lau, K. W., Chen, P. L. Y., Choy, K. L. (2006), “Two-stage approach for machine-part grouping and cell layout problems”, Robotics and Computer-Integrated Manufacturing, Vol. 22, No. 3, p. 217-238.
  23. Heragu, S. (1997), “Facilities design”, PWS Publishing Company, Boston, MA.
  24. Holland, J. H. (1975), Adaptation in Natural and Artificial Systems, Ann Arbor, University of Michigan, Michigan.
  25. Hu, G. –H., Chen, Y. –P., Tuan, C. –M., Zhou, Z. –D. (2007), “Research on Inter-cell Layout Problem in CMS Using Intelligent Optimization Algorithm”, Application Research of Computers, Vol. 24, No. 6, p. 72-74.
  26. Mitrofanov, S. P. (1996), “The Scientific Principles of Group Technology”, National Landing Library Translation, Boston Spa, Yorks, UK.
  27. 李師尹 (2002),「應用基因演算法於求解模糊環境下之單元製造系統問題」,大葉大學碩士工業工程與科技管理學系碩士論文。
  28. 徐志明 (1996),「單元製造系統設計─多目標製造單元形成演算法之發展」,國立交通大學工業工程與管理學系博士論文。
  29. 游振國 (2009),「動態環境下單元製造系統中單元形成模式」,東海大學工業工程與經營資訊學系碩士論文。
  30. 蔣治平 (2001),「考慮物料搬運特性之單元製造系統設計─單向單迴圈與雙向直線佈置」,國立成功大學工業管理學系博士論文。