English Abstract
|
This thesis considers the design problem of the Xbar chart with symmetric control limits for autocorrelated data processes. The Xbar chart, proposed by W.A. Shewhart in 1931, is a useful tool to detect a shift in the process mean. The design problem of the Xbar chart is to determine the sample size n of Xbar and the control-limit factor k (number of standard deviations away from the center line).
A conventional assumption of the Xbar chart is that the sample means are independent and normally distributed. Nevertheless, in practice the quality characteristic measurements may be autocorrelated and nonnormally distributed. Furthermore, when the standard deviation of Xbar is unknown but in-control observations are given, the standard deviation of Xbar needs to be estimated and it is random. The autocorrelation, nonnormality, and parameter estimation affect the values of the design parameters n and k for meeting specified control chart performances, e.g., average run length.
This thesis consists of four subproblems. Subproblem 1 considers the effects of the nonnormality, autocorrelation, and parameter estimation on the Xbar chart's performance. Subproblems 2 to 4 consider the design problem of the Xbar chart assuming that the data process is known (denoted as model-based design), has known autocovariance structure but unknown marginal distribution (denoted as distribution-free design), and is unknown (denoted as model-free design), respectively.
For Subproblem 1, we show that (1) The nonnormality has nonmonotonic effects on the mean and standard deviation of the run length. (2) When the number m of in-control Xbar observations increases, the mean and standard deviation of run length decrease and converge to the corresponding values of m=infinity. (3) As the lag-1 autocorrelation phi of sample means increases, P{N_0=2} (where N_0 is the in-control run length) decreases and the tail probabilities increase. Therefore, the ARL (Average Run Length) and standard deviation of run length increase. (4) For the simultaneous effect of autocorrelation and estimation, the distribution of the run length has a heavier tail as |phi| increases, m decreases, or |phi| increases and m decreases simultaneously. We also study the asymptotic result of Var(S_{Xbar}^2) to recommend the m. (5) For the simultaneous effect of nonnormality and estimation, for small shift magnitude or shift magnitude = 0., the difference of the ARL between the nonnormal and estimation case with the normal and known variance case increases as m increases. For a large shift magnitude (>=2), the difference of the ARL between the nonnormal and estimation case with the normal and known variance case decreases as m increases. (6) For the simultaneous effect of autocorrelation, nonnormality, and estimation: we conclude that the three-dimensional effect is nonmonotic on the mean and standard deviation of run length.
For Subproblem 2, we propose an algorithm to compute values of the sample size n and control-limit factor k that minimize the out-of-control ARL while keeping the in-control ARL at a specified value. Simulation experiments are run to compare the proposed Xbar chart design with the EWMAST (Exponentially Weighted Moving Average STationary), SCC (Special Cause Control), and ARMAST (Auto-Regressive Moving-Average STationary) charts. When the data process is ARMA(1, 1) (AutoRegressive of order 1 and Moving Average of order 1) process, the ARMAST chart outperforms the proposed Xbar chart, EWMA, and SCC because the ARMAST chart is designed based on the ARMA(1, 1) process. When the data process is autocorrelated with nonnormal distribution, the proposed Xbar chart often performs better than the ARMAST chart.
For Subproblem 3, we propose two distribution-free methods (denoted as Methods 1 and 2) to compute the sample size n and control-limit factor k that minimize the out-of-control ARL while keeping the in-control ARL at a specified value. Methods 1 and 2 are based on the assumptions that sample means are independently and normally distributed and that sample means follow an AR(1) (AutoRegressive of order 1) process, respectively. We further modify Methods 1 and 2 by setting the sample size to be at least 30 to meet the central limit theorem. The modified Method 2 outperforms the modified Method 1. We compare the modified Method 2 with R&W (Runger and Willemain) and DFTC (Distribution-Free Tabular CuSum) charts. The R&W and DFTC charts perform better when the autocorrelation is small to moderate and the shift is small or large. Our modified Method 2 performs better when the autocorrelation is high and the shift is moderate to large.
For Subproblem 4, we propose a model-free Xbar chart design for unknown autocorrelated data processes, when M observations of in-control quality characteristic measurements are given. The standard deviation of Xbar is estimated by the NBM (nonoverlapping batch means) method. The Xbar chart design parameters n and k and the NBM batch size omega are determined to minimize the out-of-control ARL while keeping the in-control ARL at a specified value. During the search of n, k, and omega, the ARL values are computed assuming that the sample means and batch means are independently and normally distributed. The computed optimal values of n and omega are further modified to be at least 30 for meeting the central limit theorem. Simulation experiments are run to evaluate the performance of the proposed model-free Xbar chart using AR(1) processes and ARTA(1) (AutoRegressive To Anything of order 1) processes with t and exponential marginal distributions as testing examples. The experimental results show that our model-free method performs well in general; it performs better when the autocorrelation is small or when the autocorrelation is large but the shift is small or moderate. The proposed model-free Xbar chart performs worse when the data process is ARTA(1) with an exponential marginal distribution.
|
Reference
|
-
[1] Adams, B. M., Woodal , W. H., and C. R. Superville (1994). Discussion on Run-Length Distributions of Special-Cause Control Charts for Correlated Processes. Technometrics 36, 19-22.
連結:
-
[2] Adams, B.M. and L-T. Tseng (1998). Robustness of forecast-based monitoring scheme. Journal of Quality Technology 30, 328-339.
連結:
-
[3] Alwan, L.C. and H.V. Roberts (1988). Time-series modeling for statistical process control. Journal of Business and Economic Statistics6, 87-95.
連結:
-
[5] Borror, C.M., Montgomery, D.C., Runger, G.C. (1999). Robustness of the EWMA Control Chart to Non-normality. Journal of Quality Technology 31, 309-316.
連結:
-
[6] Box, G.E.P., G.M. Jenkins, and G.C. Reinsel (1994). Time Series Analysis: Forecasting and Control, 3rd ed. New Jersey: Prentice-Hall, Inc.
連結:
-
[7] Boyles, R.A. (2000). Phase I analysis for autocorrelated processes. Journal of Quality Technology 32, 395-409.
連結:
-
[8] Brillinger, D.R. (1975). Time Series: Data Analysis and Theory. New York: Holt, Rinehart and Winston, Inc.
連結:
-
[9] Burr, I.W., (1942). Cumulative Frequency Functions. Annals of Mathematical Statistics 13, 215-232.
連結:
-
[11] Burrows, P.M. (1962). Xbar Control Schemes for a Production Variable with Skewed Distribution. The Statistician 12, 296-312.
連結:
-
[12] Cario, M.C. and B.L. Nelson (1996). Autoregressive to anything: Time-series input processes for simulation. Operations Research Letters 19, 51-58.
連結:
-
[13] Cario, M.C. and B.L. Nelson (1998). Numerical methods for fitting and simulating autoregressive to anything processes. INFORMS Journal on Computing 10, 72-81.
連結:
-
[14] Castagliola, P., Tsung, F. (2005). Autocorrelated SPC for Non-Normal Situations. Quality and Reliability Engineering International21, 131-161.
連結:
-
[15] Chakraborti, S. (2000). Run Length, Average Run Length and False Alarm Rate of Shewhart Xbar Chart: Exact Derivations by Conditioning. Communications in Statistics---Simulation and Computation 29, 61-81.
連結:
-
[18] Chen, H. (2001). Initialization for NORTA: generation of random vectors with specified marginals and correlations. INFORMS Journal on Computing 13}, 312-331.
連結:
-
[19] Chen, H. and B.W. Schmeiser (2001). Stochastic root finding via retrospective approximation. IIE Transactions 33}, 259-275.
連結:
-
[20] Choobineh, F., Ballard, J. L. (1987). Control-Limits of QC Charts for Skewed Distributions Using Weighted-Variance. IEEE Transactions on Reliability 36}, 473-477.
連結:
-
[21] Cowden, D. J. (1957). Statistical Methods in Quality Control}, Prentice-Hall: Englewood Cliffs, NJ.
連結:
-
[22] Crowder, S. V. (1989). Design of Exponentially Weighted Moving Average Scheme. Journal of Quality Technology 21}, 155-162.
連結:
-
[23] Darling, D. A. and A. J. F. Siegert. (1953). The First passage problem for a continuous Markov process. Annals of Mathematical Statistics 24}, 624-639.
連結:
-
[24] Del Castillo, E. (1996). Evaluation of Run Length Distributions for Xbar Charts with Unknown Variance. Journal of Quality Technology 28}, 116-122.
連結:
-
[25] Fishman, G. S. (1978a). Grouping Observations in Digital Simulation. Management Science 24}, 510-521.
連結:
-
[26] Fishman, G. S. (1978b). Principles of Discrete Event Simulation.} John Wiley & Sons, New York, NY.
連結:
-
[29] Goldsman, D., M. S. Meketon, and L. W. Schruben. (1990). Properties of standardized time series weighted area variance estimators. Management Science 36, 602-612.
連結:
-
[30] Harris, T. J. and W. H. Ross (1991). Statistical Process Control Procedures for Correlated Observations. The Canadian Journal of Chemical Engineering 69, 48-57.
連結:
-
[31] Hunter, J. S. (1986). The Exponentially Weighted Moving Averages. Journal of Quality Technology 18, 203-210.
連結:
-
[32] Jiang, W., K.-L. Tsui, and W.H. Woodall (2000). A new SPC monitoring method: The ARMA chart. Technometrics 42, 399-410.
連結:
-
[33] Jensen, W.A., Jones-Farmer, L.A., Champ, C., Woodall, W.H. (2006). Effects of Parameter Estimation on Control Chart Properties: A Literature Review. Journal of Quality Technology 38, 349-364.
連結:
-
[34] Johnson, N.L. (1949). Systems of Frequency Curves Generated by Methods of Translation. Biometrika 36, 149-176.
連結:
-
[35] Johnson, N.L., Kotz, S., Balakrishnan, N. (1994). Continuous Univariate Distributions, Vol. 1, 2nd edn. John Wiley & Sons: New York.
連結:
-
[36] Johnson, R.A. and M. Bagshaw (1974). The effect of serial correlation on the performance of CuSum test. Technometrics 16, 103-112.
連結:
-
[37] Kang, K. and B.W. Schmeiser (1987). Properties of batch means from stationary ARMA time series. Operations Research Letters 6, 19-24.
連結:
-
[39] Kim, S.-H., Alexopoulos, C., Tsui, K.-L., Wilson, J.R. (2007). A distribution-free tabular CuSum chart for autocorrelated data. IIE Transactions 39, 317-330.
連結:
-
[40] Kramer, H., Schmid, W. (2000). The Influence of Parameter Estimation on the ARL of Shewhart Type Charts for Time Series. Statistical Papers 41, 173-196.
連結:
-
[41] Law, A. and J.S. Carson (1979). A sequential procedure for determining the length of steady-state simulation. Operations Research 29, 1011-1925.
連結:
-
[42] Lu, C.W. and M.R. JR. Reynolds (1999). EWMA control charts for monitoring the mean of autocorrelated process. Journal of Quality Technology 31, 166-188.
連結:
-
[43] Lu, C.W. and M.R. JR. Reynolds (2001). CUSUM charts for monitoring an autocorrelated process. Journal of Quality Technology 33, 316-334.
連結:
-
[44] Lucas, J.M. and M.S. Saccucci (1990). Exponentially weighted moving average control schemes: Properties and enhancements. Technometrics 32, 1-12.
連結:
-
[45] Maragah, H.D., Woodall, W.D. (1992). The Effect of Autocorrelation on the Retrospective X-chart. Journal of Statistical Computation and Simulation 40, 29-42.
連結:
-
[47] Montgomery, D. C. (2005). Introduction to Statistical Quality Control. 5th ed. John Wiley & Sons, New York, NY.
連結:
-
[48] Montgomery, D. C. and Mastrangelo, C. M. (1991). Some Statistical Process Control Methods for Autocorrelated Data. Journal of Quality Technology 23, 179-193.
連結:
-
[51] Page, E.S. (1954). Continuous Inspection Schemes. Biometrics 41, 100-115.
連結:
-
[52] Pedrosa, A. C. (1994). Automatic batching in simulation output analysis, PhD thesis, School of Industrial Engineering, Purdue University, W. Lafayette, IN, USA.
連結:
-
[53] Priestley, M.B. (1981). Spectral Analysis and Time Series. London: Academic Press.
連結:
-
[54] Quesenberry, C.P. (1993). The Effect of Sample Size on Estimated Limits for Xbar and X Control Charts. Journal of Quality Technology 25, 237-247.
連結:
-
[55] Roberts, S. W. (1959). Control Chart Tests Based on Geometric Moving Averages. Technometrics 1, 239-251.
連結:
-
[57] Runger, G.C. and T.R. Willemain (1995). Model-based and model-free control of autocorrelated processes. Journal of Quality Technology 27, 283-292.
連結:
-
[58] Runger, G.C. and T.R. Willemain (1996). Batch-means control charts for autocorrelated data. IIE Transactions 28, 483-487.
連結:
-
[59] Runger, G., T. Willemain and S. Prabhu (1995). Average-run-lengths for CUSUM control charts applied to residuals. Communications in Statistics,Part A-Theory and Methods, 24, 273-282.
連結:
-
[60] Schilling, E.G., Nelson, P. R. (1976). The Effect of Non-normality on the Control Limits of Xbar Charts. Journal of Quality Technology 8, 183-188.
連結:
-
[61] Schmid, W. (1995). On the Run Length of a Shewhart Chart for Correlated Data. Statistical Papers 36, 111-130.
連結:
-
[63] Siegmund, D. (1985). Sequential Analysis: Tests and Confidence Intervals. Springer-Verlag, New York.
連結:
-
[64] Shewhart, W. A. (1931). Economic Control of Quality of Manufactured Product. New York: D. Van Nostrand Co.
連結:
-
[65] Song, W. T. and Schmeiser, B. W. (1995). Optimal mean-squared-error batch sizes. Management Science 41, 110-123.
連結:
-
[66] Stoumbos, Z.G., Reynolds, M.R. Jr. (2000). Robustness to Non-normality and Autocorrelation of Individuals Control Charts. Journal of Statistical Computation and Simulation 66, 145-187.
連結:
-
[67] Timmer, D.H., J., JR. Pignatiello, and M. Longnecker (1998). The development and evaluation of CUSUM-based control charts for an AR(1) process. IIE Transactions 30, 525-534.
連結:
-
[68] Vander Weil, S.A. (1996). Modeling Processes that Wander Using Moving Average Models. Technometrics 38, 139-151.
連結:
-
[69] Vasilopoulos, A.V. and A.P. Stamboulis (1978). Modification of control chart limits in the presence of data correlation. Journal of Quality Technology 10, 20-30.
連結:
-
[70] Wardell, D.G., H. Moskowitz and R.D. Plante (1992). Control Charts in the Presence of Data Correlation. Management Science 38, 1084-1105.
連結:
-
[71] Wardell, D.G., H. Moskowitz and R.D. Plante (1994). Run-length distribution of special-cause control charts of correlation processes. Technometrics 36, 3-17.
連結:
-
[72] Yashchin, E. (1993). Performance of CUSUM control schemes for serially correlated observations. Technometrics 35, 37-52.
連結:
-
[73] Yourstone, S.A., Zimmer, W. J. (1992). Non-Normality and the Design of Control Charts for Averages. Decision Sciences 23, 1099-1113.
連結:
-
[74] Zhang, N.F. (1998). A statistical control chart for stationary process data. Technometrics 40, 24-38.
連結:
-
[4] Balakrishnan, N., Kocherlakota, S. (1986). Effects of Non-normality on Xbar charts: Single assignable cause model. Sankhy={a} B 48, 439-444.
-
[10] Burr, I.W. (1967). The Effects of Non-Normality on Constants for Xbar and R Charts. Industrial Quality Control 23, 563-568.
-
[16] Chan, L.K., Hapuarachchi, K.P., Macpherson, B.D. (1988). Robustness of Xbar and R Charts. IEEE Transactions on Reliability 37, 117-123.
-
[17] Chen, G. (1997). The Mean and Standard Deviation of the Run Length Distribution of Xbar Charts When Control Limits Are Estimated. Statistica Sinica 7, 789-798.
-
[27] Fuller, W. A. (1996). Introduction to Statistical Time Series} (2nd ed.). John Wiley & Sons, New York, NY.
-
[28] Ghosh, B.K., Reynolds, M.R. Jr., Hui, Y.V. (1981). Shewhart Charts with Estimated Process Variance. Communications in Statistics---Theory and Methods 18, 1797-1822.
-
[38] Kim, S.-H., C. Alexopoulos, D. Goldsman, and K.-L. Tsui (2006). A new model-free CuSum chart for autocorrelated processes. Technical Report, School of Industrial & Systems Engineering, Georgia Institute of Technology, GA, USA.
-
[46] Montgomery, D. C. (1996). Introduction to Statistical Quality Control. 3rd ed. John Wiley & Sons, New York, NY.
-
[49] Ng, C.H., Case, K.E. (1992). Control Limits and the ARL: Some Surprises. First Industrial Engineering Research Conference Proceedings, 127-129.
-
[50] Padgett, C.S., Thombs, L.A., Padgett, W.J. (1992). On the alpha-risks for Shewhart Control Charts. Communications in Statistics---Simulation and Computation 21, 1125-1147.
-
[56] Ross, S.M. (2004). Introduction to Probability and Statistics for Engineers and Scientists, 3rd edn., Elsevier Academic Press.
-
[62] Schmid, W. (1997). On EWMA charts for time series. In Frontiers in Statistical Quality Control 5, eds., H.J. Lenz, P.-Th. Wilrich, Heidelberg: Physica-Verlag, 115-137.
|