透過您的圖書館登入
IP:52.14.168.56
  • 學位論文

不透水鋪面排水機制之研究—以瀝青為例

The Drain Mechanism of the Impermeable Pavement – Taking Bitumen as an Example

指導教授 : 曹拯元 倪晶瑋
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


地表透水性是基地保水、軟性防洪的首要任務。軟性地表自可保水,但硬質地表之透水、保水效能則須慎加研議。目前透水性鋪面可分三大系統:其一為透水磚系統;其二為歐洲小石磚系統;其三為透水瀝青/混凝土系統。而地表排水工法則有:毛細排水帶及JW防災空調導水系統工種。本研究考量以不透水但單價低、維護管理容易的瀝青配以透水之溝槽,再連結至地下貯水系統之機制,達到地表排水、基地貯水及軟性防洪之目的。 本研究為一實證研究,在方法上以實驗為主,文獻回顧為輔。執行方形、U形及V形剖面型態之溝槽與填充2in及1.5in骨材部分之流速實驗,比較其結果並做成結論。有關貯水系統部分,乃延用曹拯元、葉春樹與倪晶瑋等3人2010年所研發之地下雨水貯集系統,不在本文中另行研發。 主要研究結果為:1.溝槽剖面形態確實影響流速;2.填充2in骨材者,較填充1.5in骨材者流速快;3.填充混合骨材時,上1.5in/下2in者之流速大於上2in/下1.5in者;4.無填充骨材時,方形、U形及V形3種形態溝槽之流速與底部開口孔數呈倍數關係。 本研究之研究結果可提供土木及都市、建築、景觀、庭園等設計師,在實務應用上之參考。

並列摘要


The permeability of the earth’s surface is the primary challenge for water retention and flood mitigation. Soft surfaces can retain water, but the permeability and retention efficiency of hard surfaces are worthy issues for discussion. The current pervious pavement methods include the pervious concrete brick pavement, the pebble brick pavement, and the pervious asphalt/concrete pavement. Current surface drainage methods include capillary drain belts and the “Environment Protecting Gutter Duct Structure for a Concrete Roadway” invented by Jui-wen Chen. This study uses pervious gutters and asphalt pavement, which is impervious, low cost, and easy to maintain, connected to underground water storage systems to facilitate surface water drainage, water retention, and flood mitigation. The methods used in this empirical study are experiments and a literature review. This study conducted velocity experiments using gutters with square-shaped, U-shaped, and V-shaped sections filled with 2in and 1.5in aggregate. This study compared the experimental results and then proposed conclusions. Regarding water storage systems, this study employed an underground rainwater storage system developed by Jeeng-Yuan Tsaur, Chun-Shu Yeh, and Jin-Wei Nie in 2010. The research results of this study are as follows: (1) The section types of the gutters influenced the velocities; (2) the gutters filled with 2in aggregate enabled a faster flow than those filled with 1.5in aggregate did; (3) regarding gutters filled with mixed aggregate, the velocity of the gutters with 1.5in (top) / 2in (down) was greater than those with 2in (top) /1.5in (down); and (4) regarding gutters without aggregate, a multiplicative relationship was found between the numbers of holes in the bottom and the velocities of the three gutter section types: square-shaped, U-shaped, and V-shaped. The results of this study can provide a reference for practical applications in the fields of civil and urban engineering, architecture, landscaping, and garden designs.

參考文獻


楊富程(2005),《AC-20瀝青混合料鋪面試驗路段之成效評估》,中央大學土木工程研究所碩士論文,桃園:中央大學。
張正德(2008),《高速公路段雨水貯集再利用之可行性分析-以國道三號九如長治段為例》,成功大學水利及海洋工程研究所碩士論文,台南:成功大學。
游景翔(2005),《骨材級配對瀝青混凝土性質影響之研究》,成功大學土木工程研究所碩士論文,台南:成功大學。
鐘坤生(2004),《不同級配與纖維對瀝青混凝土工程性質之影響》,成功大學土木工程研究所碩士論文,台北:成功大學。
葉宗瑋(2004),《孔隙率對排水瀝青混凝土成效之比較》,成功大學土木工程研究所碩士論文,台南:成功大學。

延伸閱讀