Title

平面銑削之灰色即時可調式學習表面粗糙度預測系統開發

Translated Titles

The Development of a Gray In-process Adaptive Learning Surface Roughness Prediction System in Milling Operations

Authors

張黃傑

Key Words

表面粗糙度 ; 灰色關聯分析 ; 灰色預測 ; Surface roughness ; Grey relational analysis ; Grey prediction

PublicationName

中原大學工業與系統工程研究所學位論文

Volume or Term/Year and Month of Publication

2012年

Academic Degree Category

碩士

Advisor

黃博滄

Content Language

繁體中文

Chinese Abstract

隨著企業之間的競爭,成本及品質的管控也日漸成為必然的,而對於生產前的預測行為也於近年來備受重視,因此預測系統的影響也逐漸重要,其中模擬建模、統計預測、迴歸分析及各軟性計算等已被廣泛運用於各預測系統中,其精準度也日漸提升,但皆需要大量數據才得以建構,對於少批量生產及運用於生產新產品上,則難以使用,故本研究希望建構一小樣本即時預測系統,運用在生產初期樣本數不足的情況,並可依據不同規格的加工參數即時建置不同之模型。 本研究以開發GIALSR預測系統,透過灰色關聯分析選定輸入因子,並利用灰色理論之小樣本預測特性做為基本架構,建構即時預測系統,灰色預測是透過因子與結果之累加生成序列、灰色背景值及因子參數加以運算,並利用數據間的趨勢特性建立小型模型預測資料,而本研究將運用該系統於銑削加工的表面粗糙度預測實例中,透過探討銑削加工時之即時切削力與粗糙度的關係,找出關聯度較高之切削力,並利用試產階段之少數資料建立可調式粗糙度即時預測模型。 為了證明提出之方法的可靠性與準確性,本研究運用新發展的GIALSR預測系統於銑削加工的表面粗糙度預測實例中,建置出即時表面粗糙度預測系統,並與傳統大樣本模型之類神經模型比較其差異性,驗證即時建構之小樣本模型與大樣本模型並無顯著差異,進而得到小型預測系統的可行性,而研究結果顯示,透過因子探討及運用灰色理論所建置之GIALSR預測系統,在精準度上與大樣本建模並無顯著差異,對於即時建置GIALSR預測系統之方法是可行的。

English Abstract

With competitions between enterprises, it is importance and necessary to control costs and quality of products. Therefore, the development of prediction system is tending to become a significant role in last decades. The models of the system including model simulation, statistical prediction, regression analysis and various soft computing have been generally used in the prediction system. its accuracy is also increasing gradually. However, the major component of building the models is a large number of data. Under the circumstance, the prediction system is difficult to be implemented under the small batch and new producing lines situations. The purpose of this study is to develop a real-time adaptive learning prediction system, which can be utilized in a small sample, such as production shortfall in the early stages of producing. Moreover, this model can be adjusted in accordance with different specifications of operation conditions. This research is to develop a gray prediction system associated with gray relational analysis, which is use select the input factors of the system. Furthermore, a gray prediction theory would work as framework to build a real-time adaptive learning prediction system with a small number of data. The gray prediction implemented the result of accumulated generating operation, the calculation of gray values, effect data and establishes information anticipation with a small-scale model through the trend of characteristics of. This study applied the model to predict the surface roughness in milling operations. The correlation between cutting forces and surface roughness has been analyzed. With proper cutting force as input factors, a gray real time adaptive learning surface roughness prediction system in milling operations is built. The system does not need any training data in advance to construct the prediction model. It would only use limited data from trial production or set up to create the real-time prediction model for each production batch. To evaluate reliability and accuracy of the system, the model would be compared with a traditional neural network prediction model of a large sample. The result of comparison between these two models shows no significant difference. The time and cost of collecting and data and training model are significantly reduced.

Topic Category 電機資訊學院 > 工業與系統工程研究所
工程學 > 工程學總論
Reference
  1. Ak, R., Li, Y., Vitelli, V., Zio, E., López Droguett, E., & Magno Couto Jacinto, C. (2013). NSGA-II-trained neural network approach to the estimation of prediction intervals of scale deposition rate in oil & gas equipment. Expert Systems with Applications, 40(4), 1205-1212.
    連結:
  2. Altintas, Y., & Yellowley, I. (1989). In-Process Detection of Tool Failure in Milling Using Cutting Force Models. Journal of Manufacturing Science and Engineering, 111(2), 149-157.
    連結:
  3. Bouacha, K., Yallese, M. A., Mabrouki, T., & Rigal, J. F. (2010). Statistical analysis of surface roughness and cutting forces using response surface methodology in hard turning of AISI 52100 bearing steel with CBN tool. International Journal of Refractory Metals and Hard Materials, 28(3), 349-361.
    連結:
  4. Bouzakis, K. D., Aichouh, P., & Efstathiou, K. (2003). Determination of the chip geometry, cutting force and roughness in free form surfaces finishing milling, with ball end tools. International Journal of Machine Tools and Manufacture, 43(5), 499-514.
    連結:
  5. Cakir, M. C., & Isik, Y. (2005). Detecting tool breakage in turning aisi 1050 steel using coated and uncoated cutting tools. Journal of Materials Processing Technology, 159(2), 191-198.
    連結:
  6. Chen, J. C., & Lou, M. S. (2000). Fuzzy-nets based approach to using an accelerometer for an in-process surface roughness prediction system in milling operations. International Journal of Computer Integrated Manufacturing, 13(4), 358-368.
    連結:
  7. Çolak, O., Kurbanoğlu, C., & Kayacan, M. C. (2007). Milling surface roughness prediction using evolutionary programming methods. Materials & Design, 28(2), 657-666.
    連結:
  8. Deng, J. L. (1982). Control problems of grey systems. Systems & Control Letters, 1(5), 288-294.
    連結:
  9. El-Sonbaty, I. A., Khashaba, U. A., Selmy, A. I., & Ali, A. I. (2008). Prediction of surface roughness profiles for milled surfaces using an artificial neural network and fractal geometry approach. Journal of Materials Processing Technology, 200(1-3), 271-278.
    連結:
  10. Fetecau, C., & Stan, F. (2012). Study of cutting force and surface roughness in the turning of polytetrafluoroethylene composites with a polycrystalline diamond tool. Measurement, 45(6), 1367-1379.
    連結:
  11. Gologlu, C., & Sakarya, N. (2008). The effects of cutter path strategies on surface roughness of pocket milling of 1.2738 steel based on Taguchi method. Journal of Materials Processing Technology, 206(1–3), 7-15.
    連結:
  12. Huang, B., & Chen, J. C. (2003). An in-process neural network-based surface roughness prediction (INN-SRP) system using a dynamometer in end milling operations. International Journal of Advanced Manufacturing Technology, 21(5), 339-347.
    連結:
  13. Huang, B. P., Chen, J. C., & Li, Y. (2008). Artificial-neural-networks-based surface roughness Pokayoke system for end-milling operations. Neurocomputing, 71(4-6), 544-549.
    連結:
  14. Huang, P. B., Chen, J. C., Lin, C. J., Lyu, P. H., & Lai, B. C. (2011). A Taguchi-neural-based in-process tool breakage monitoring system in end milling operations. Paper presented at the 3rd International Conference on Advanced Design and Manufacture, ADM2010, September 8, 2010 - September 10, 2010, Nottingham, United kingdom.
    連結:
  15. Huang, P. B., Shiang, W. J., Jou, Y. T., Chang, C. H., & Ma, C. C. (2010, July). An in-process adaptive control of surface roughness in end milling operations. Paper presented at the Machine Learning and Cybernetics (ICMLC), 2010 International Conference on.
    連結:
  16. Lalwani, D. I., Mehta, N. K., & Jain, P. K. (2008). Experimental investigations of cutting parameters influence on cutting forces and surface roughness in finish hard turning of MDN250 steel. Journal of Materials Processing Technology, 206(1–3), 167-179.
    連結:
  17. Lei, M. L., & Feng, Z. R. (2012). A proposed grey model for short-term electricity price forecasting in competitive power markets. International Journal of Electrical Power & Energy Systems, 43(1), 531-538.
    連結:
  18. Li, D. C., Chen, L. S., Lin Y. S. (2003) Using functional virtual population as assistance to learn scheduling knowledge in dynamic manufacturing environments. International Journal of Production Research, 41(17), 4011-4024.
    連結:
  19. Lin, S. C., & Lin, R. J. (1996). Tool wear monitoring in face milling using force signals. Wear, 198(1–2), 136-142.
    連結:
  20. Liou, J. J. H., Hsu, C. C., Yeh, W. C., & Lin, R. H. (2011). Using a modified grey relation method for improving airline service quality. Tourism Management, 32(6), 1381-1388.
    連結:
  21. Liu, S. F., & Lin, Y. (2011). Introduction to Grey Systems Theory Grey Systems (Vol. 68, pp. 1-18). Berlin Heidelberg: Springer.
    連結:
  22. Liu, W. L., Chien, W. T., Jiang, M. H., & Chen, W. J. (2010). Study of Nd:YAG laser annealing of electroless Ni–P film on spiegel-iron plate by Taguchi method and grey system theory. Journal of Alloys and Compounds, 495(1), 97-103.
    連結:
  23. Ma, F. Y., & Wang, W. H. (2007). Prediction of pitting corrosion behavior for stainless SUS 630 based on grey system theory. Materials Letters, 61(4-5), 998-1001.
    連結:
  24. Mao, M. Z., & Chirwa, E. C. (2006). Application of grey model GM(1,1) to vehicle fatality risk estimation. Technological Forecasting and Social Change, 73(5), 588-605.
    連結:
  25. Mehta, N. K., Pandey, P. C., & Chakravarti, G. (1983). An investigation of tool wear and the vibration spectrum in milling. Wear, 91(2), 219-234.
    連結:
  26. MirMostafaee, S. M. T. K., & Ahmadi, J. (2011). Point prediction of future order statistics from an exponential distribution. Statistics & Probability Letters, 81(3), 360-370.
    連結:
  27. Moradi, H., Movahhedy, M. R., & Vossoughi, G. (2012). Tunable vibration absorber for improving milling stability with tool wear and process damping effects. Mechanism and Machine Theory, 52, 59-77.
    連結:
  28. Pai, T. Y., Tsai, Y. P., Lo, H. M., Tsai, C. H., & Lin, C. Y. (2007). Grey and neural network prediction of suspended solids and chemical oxygen demand in hospital wastewater treatment plant effluent. Computers & Chemical Engineering, 31(10), 1272-1281.
    連結:
  29. Pao, H. T., Fu, H. C., & Tseng, C. L. (2012). Forecasting of CO2 emissions, energy consumption and economic growth in China using an improved grey model. Energy, 40(1), 400-409.
    連結:
  30. Pourshahriar, H. (2012). Correct vs. accurate prediction: A comparison between prediction power of artificial neural networks and logistic regression in psychological researches. Procedia - Social and Behavioral Sciences, 32(0), 97-103.
    連結:
  31. Quintana, G., Rudolf, T., Ciurana, J., & Brecher, C. (2011). Using kernel data in machine tools for the indirect evaluation of surface roughness in vertical milling operations. Robotics and Computer-Integrated Manufacturing, 27(6), 1011-1018.
    連結:
  32. Ramamurthi, K., & Hough, Jr C. L. (1993). Intelligent Real-Time Predictive Diagnostics for Cutting Tools and Supervisory Control of Machining Operations. Journal of Manufacturing Science and Engineering, 115(3), 268-277.
    連結:
  33. Rivero, A., de Lacalle, L. N. L., & Penalva, M. L. (2008). Tool wear detection in dry high-speed milling based upon the analysis of machine internal signals. Mechatronics, 18(10), 627-633.
    連結:
  34. Samvedi, A., & Jain, V. (2013). A grey approach for forecasting in a supply chain during intermittent disruptions. Engineering Applications of Artificial Intelligence, 26(3), 1044-1051.
    連結:
  35. Singh, P., Shera, S. S., Banik, J., & Banik, R. M. (2013). Optimization of cultural conditions using response surface methodology versus artificial neural network and modeling of l-glutaminase production by Bacillus cereus MTCC 1305. Bioresource Technology, 137(0), 261-269.
    連結:
  36. Tang, H. W. V., & Yin, M. S. (2012). Forecasting performance of grey prediction for education expenditure and school enrollment. Economics of Education Review, 31(4), 452-462.
    連結:
  37. Tarng, Y. S., & Lee, B. Y. (1993). A sensor for the detection of tool breakage in NC milling. Journal of Materials Processing Technology, 36(3), 259-272.
    連結:
  38. Wang, K. C. (2011). A hybrid Kansei engineering design expert system based on grey system theory and support vector regression. Expert Systems with Applications, 38(7), 8738-8750.
    連結:
  39. Wang, Y. F. (2002). Predicting stock price using fuzzy grey prediction system. Expert Systems with Applications, 22(1), 33-38.
    連結:
  40. Xu, L., & Liu, S. (2013). Study of short-term water quality prediction model based on wavelet neural network. Mathematical and Computer Modelling, 58(3–4), 807-813.
    連結:
  41. Yang, H. H., Liu, J. L., Chang, M. C. S., & Yang, J. C. (2012). Improvement of e-government service process via a grey relation agent mechanism. Expert Systems with Applications, 39(10), 9755-9763.
    連結:
  42. Yang, S. H., & Chen, Y. P. (2012). An evolutionary constructive and pruning algorithm for artificial neural networks and its prediction applications. Neurocomputing, 86, 140-149.
    連結:
  43. Yang, Y., & Zhao, Y. (2012). Prevailing Wind Direction Forecasting for Natural Ventilation djustment in Greenhouses Based on LE-SVM. Energy Procedia, 16, Part A(0), 252-258.
    連結:
  44. Zhu, C. H., Li, N. P., Re, D., & Guan, J. (2007). Uncertainty in indoor air quality and grey system method. Building and Environment, 42(4), 1711-1717.
    連結:
  45. 呂朋樺(2010) 。結合迴歸模糊與田口方法發展表面粗糙度預測系統之研究(碩士)。中原大學,桃園縣。
    連結:
  46. 吳士昌(2011)。資料探勘輔助類神經演算法發展表面粗糙度預測之研究(碩士)。中原大學,桃園縣。
    連結:
  47. 馬成傑(2010)。監督式學習類神經網路於銑削斷刀即時監控之研究(碩士)。中原大學,桃園縣。
    連結:
  48. 陳久弘(2012)。運用灰關聯因子分析與類神經網路於銑削表面粗糙度即時預測系統(碩士)。中原大學,桃園縣。
    連結:
  49. 陳嘉聲(2008)。改良式非等間距灰預測模型(碩士)。國立成功大學,台南市。
    連結:
  50. DeGarmo, E. P., Black, J. T. & Kohser, R. A. (1997). Materials and Processes in Manufacturing (8 ed.). New York: Wiley.
  51. Liu, S. F., & Lin, Y. (2006). Grey Information. London: Springer.
  52. Song, D. Y., Otani, N., Aoki, T., Kamakoshi, Y., Ohara, Y., & Tamaki, H. (2005). A new approach to cutting state monitoring in end-mill machining. International Journal of Machine Tools & Manufacture, 45(7-8), 909-921.
  53. Yan, D., El-Wardany, T. I., & Elbestawi, M. A. (1995). A multi-sensor strategy for tool failure detection in milling. International Journal of Machine Tools and Manufacture, 35(3), 383-398.
  54. 交通大學液晶顯示科技暨光電材料實驗室。http://www.ieo.nctu.edu.tw/pmrl/research.html,2012。
  55. 林詩瑀、陳志堅(2010)。精密量測檢驗。台北市:全華科技圖書股份有限公司。
  56. 柯金標(2006)。應用灰關聯分析建立國內上市電機機械公司經營績效評估之研究(碩士)。東吳大學,台北市。
  57. 柳義耿(2001)。高速銑削之切削力研究(碩士)。國立中興大學,台中市。
  58. 張若峰(2012)。機械製造基礎(2 ed.)。中國:人民郵電出版社。
  59. 陳慧士(2007)。行動通信產品市場需求預測 — 以中華電信第三代行動電話市場銷售量為例(碩士)。朝陽科技大學,台中市。
  60. 黃昭翔(2011)。台股期貨市場與選擇權之灰色關聯分析與交易策略設計(碩士)。國立臺灣科技大學,台北市。
  61. 楊杰、劉更謙、李世杰(2006)。精密銑削表面溫度的實驗研究。現代制造工程(7), 67-69。
  62. 楊啟杰(1999)。製造程序。台北市:五南出版社。
  63. 溫坤禮、趙忠賢、張宏志、陳曉瑩、溫惠筑(2009)。灰色理論與應用。台北市:五南出版社。
  64. 熊和金、徐華中(2005)。灰色控制。中國:國防工業出版社。
  65. 劉思峰、黨耀國(2010)。灰色系統理論及其應用。中國:科學出版社。
  66. 鄧聚龍(2002)。灰理論基礎。中國:華中科技大學出版社。
Times Cited
  1. 林明慶(2016)。建構田口殘差修正GM(1,1)灰模型之微鑽孔刀具壽命預測系統。中原大學工業與系統工程研究所學位論文。2016。1-89。