Title

以雙螺桿混煉製備熱塑性聚氨基甲酸酯奈米複材之性質探討

Translated Titles

Study on the Preparation and Characterization of Thermoplastic Polyurethane Nanocomposites by Twin Screw Process

Authors

劉勇裕

Key Words

熱塑性聚氨基甲酸酯 ; 雙螺桿 ; 蒙脫土 ; 奈米複材 ; thermoplastic polyurethane ; montmorillonite ; Twin screw compounder ; nanocomposites

PublicationName

中原大學化學研究所學位論文

Volume or Term/Year and Month of Publication

2014年

Academic Degree Category

碩士

Advisor

蔡宗燕

Content Language

繁體中文

Chinese Abstract

本研究之主要目的,選用天然純化蒙脫土(CL120),利用溶膠-凝膠法(Sol-Gel)進行表面改質,在未添加於高分子基材前已經可以先行將天然黏土達到一定程度上的脫層結構,並將表面改質後的層狀材料,利用微型雙螺桿熔融混煉機(Microcompounder)與熱塑性聚氨基甲酸酯(Thermoplastic Polyurethane,TPU)製備成熱塑性聚氨基甲酸酯/改質型黏土奈米複合材料, 並以熱壓方式製備薄膜,進而檢測並評估各性質探討。 以傅立葉紅外線光譜儀(Fourier Transform Infrared,FT-IR)鑑定改質型蒙脫土與熱塑性聚氨基甲酸酯之官能基鍵結,結果證明TPU/CL120-SiO2奈米複合材料為相容型之混摻系統;以X-ray繞射光譜分析儀(X-ray Diffraction Instrument,XRD)及穿透式電子顯微鏡(Transmission Electron Microscopy,TEM)觀察其分散性,可得知TPU/CL120-SiO2是以小部份插層、大部分脫層型態;TPU/CL120-SiO2-5phr其熱裂解溫度(Decomposed Temperature,Td)最高提升8.3 ℃,自305.8 ℃提升至314.1 ℃,而TPU/CL120-SiO2-5phr玻璃轉換溫度(Glass Transition Temperature,Tg)以微差掃描熱分析儀(Differential Scanning Calorimetry,DSC)檢驗結果,提升5.18 ℃,自-39.30 ℃提高至-34.12 ℃,而在動態機械分析儀(Dynamic Mechanical Analyzer,DMA)中,提升8.88 ℃,自-42.55 ℃提高至-33.67 ℃;在機械性質方面,以分散性最佳之TPU/CL120-SiO2-5phr,其儲存模數提升最高約83 %,,而拉力試驗方面,拉伸強度(Tensile Strength)、Modulus與耐磨耗(Abrasion Resistance)以TPU/CL120-SiO2-9phr最佳,提升效果68.13 %,100% Modulus提升效果53.09%, 300% Modulus提升效果42.75%,耐磨耗測試提升效果73.08 %,伸長率以TPU/CL120-SiO2-5phr提升效果17.9 %較佳;光學性質方面,以TPU/CL120-SiO2-5phr,紫外光有效阻隔4.9 %(375nm)和10.6 %(320nm),且保有對可見光之高穿透度較理想化;耐老化方面,TPU/CL120-SiO2-5phr之耐黃變係數(△YI)由原本空白的16.68降低至13.20,耐黃變效果提升至20.86 %,色差值(△E) 則由原本空白的11.26降低至8.72,色差效果提升 22.56 %,老化衰退程度由原本空白之25 %減緩至19 %,耐老化效果提升8%。 因此本實驗中的熱塑性聚氨基甲酸酯/改質型黏土奈米複合材料顯現出可有效改善材料的多種特性。

English Abstract

This work focused on the pristine sodium montmorillonite clay (CL120) using the sol-gel method for surface modification, without the addition of the polymer to the substrate before pristine sodium montmorillonite clay can reach a certain degree of delamination of the structure. Surface modification of layered materials applied to thermoplastic polymer nanocomposites using by twin screw micro-compounder with thermoplastic polyurethane (TPU), and then made thin film of polymer nanocomposites by hot pressure method. Fourier transform infrared spectroscopy (FT-IR) is to identify the functional groups of modified montmorillonite, which would be bonded to the thermoplastic polyurethane and the results show TPU/CL120-SiO2 nanocomposites is compatible system for the blending process. X-ray diffraction pattern (XRD) and transmission electron microscopy (TEM) are applied to observe the dispersion of composites; TPU/CL120-SiO2 performed a small part of intercalation and majority of delamination patterns of inorganic layered materials. The decomposition temperature (Td) of TPU/CL120-SiO2- 5phr was maximum increased 8.3 ℃ from 305.8 ℃ to 314.1 ℃. The glass transition temperature (Tg) of TPU/CL120-SiO2-5phr in differential scanning calorimetry (DSC) was increased 5.18 ℃from -39.30 ℃to -34.12 ℃, and in the dynamic mechanical analyzer (DMA) was increased 8.88 ℃ from -42.55 ℃ to -33.67 ℃. The storage modulus of TPU/CL120-SiO2-5phr was increased 83 % due to the exfoliate nanostructure. Tensile strength, Modulus and Abrasion resistance of TPU/CL120-SiO2-9phr was the best, the tensile strength increased 68.13 % , 100% modulus increased 53.09 % and 300% modulus increased 42.75 %, the abrasion resistance increased 73.08%, and the elongation of TPU/CL120-SiO2-5phr enhance the better effect of 17.9%. In the optical properties, the UV resistance of TPU/CL120-SiO2-5phr was separately 4.9 % (375nm) and 10.6 % (320nm), and maintains a high visible light transmittance than the idealized. In the ultraviolet aging properties, TPU/CL120-SiO2-5phr of the resistance yellowing coefficient (△ YI) decreased from 16.68 to 13.20, yellowing resistance effect was increased to 20.86 %, TPU/CL120-SiO2-5phr of the color difference (△ E) decreased from 11.26 to 8.72, color effects to enhance 22.56 %, the degree of aging decreased from 25% to 19%,anti-aging effects to enhance 8%. Therefore, the performance of TPU/clay nanocomposites has shown the great improvement in various properties.

Topic Category 基礎與應用科學 > 化學
理學院 > 化學研究所
Reference
  1. 3. S. L. Cooper, A. V. Tobolsky, ” Properties of linear elastomeric polyurethanes. ” J. Appl. Polym. Sci., 10(12), 1837-1844, 1966.
    連結:
  2. 6. A. Pattanayak, S. C. Jana,” Synthesis of thermoplastic polyurethane nanocomposites of reactive nanoclay by bulk polymerization methods. ” Polymer, 46(10), 3275-3288, 2005.
    連結:
  3. 7. C. H. Dan, Y. D. Kim, M. Lee, B. H. Min, J. H. Kim,” Effect of solvent on the properties of thermoplastic polyurethane/clay nanocomposites prepared by solution mixing. ” J. Appl. Polym. Sci., 108(4), 2128-2138, 2008.
    連結:
  4. 8. 呂忠韓,” TPU耐黃變劑之開發”,國立台北科技大學有機高分子研究所碩士論文,2009.
    連結:
  5. 9. A. K. Mishra, P. R. Rajamohanan, G. B. Nando, S. Chattopadhyay, “Structure-property of thermoplastic polyurethane-clay nanocomposite based on covalent and dual-modified laponite. ” Adv. Sci. Lett., 4(1), 65-73, 2011.
    連結:
  6. 10. K. Zukiene, V. Jankauskaite, V. Betingyte, A. Baltusnikas,” Properties of recycled polycaprolactone-based thermoplastic polyurethane filled with montmorillonites. ” J. Appl. Polym. Sci., 128(3), 2186-2196, 2013.
    連結:
  7. 11. M. Lee, W. Kim, J. Ku, Y. D. Kim, B. H. Min, J. H. Kim,“ Influence of nanoclays on electrical and morphological properties of thermoplastic polyurethane/multiwalled carbon nanotube/clay nanocomposites. ” J. Appl. Polym. Sci., 127(6), 4233-4240, 2013.
    連結:
  8. 12. W. Kim, D.W.Chung, J. H. Kim,” Effect of length of hydroxyalkyl groups in the clay modifier on the properties of thermoplastic polyurethane/clay nanocomposites. ” J. Appl. Polym. Sci., 110(5), 3209-3216, 2008.
    連結:
  9. 13. C. H. Dan, W. T. Kim, J. H. Kim,” Effect of solvent on the properties of thermoplastic polyurethane/clay nanocomposites. ” PMSE Preprints, 96, 641-642, 2007.
    連結:
  10. 15. C. H. Dan, M. H. Lee, Y. D. Kim, B. H. Min, J. H. Kim,” Effect of clay modifiers on the morphology and physical properties of thermoplastic polyurethane/clay nanocomposites. ” Polymer, 47(19), 6718-6730, 2006.
    連結:
  11. 19. A. Pattanayak, S. C. Jana,” High-strength and low-stiffness composites of nanoclay-filled thermoplastic polyurethanes. ” Polym. Eng. Sci., 45(11), 1532-1539, 2005.
    連結:
  12. 20. A. Pattanayak, S. C. Jana,” Thermoplastic polyurethane nanocomposites of reactive silicate clays. ” Annual Technical Conference - Society of Plastics Engineers, 63rd, 1933-1937, 2005.
    連結:
  13. 21. A. Pattanayak, S. C. Jana,” Thermoplastic polyurethane nanocomposites of reactive silicate clays: effects of soft segments on properties. ” Polymer , 46(14), 5183-5193, 2005.
    連結:
  14. 22. A. Pattanayak, S. C. Jana,” Properties of bulk-polymerized thermoplastic polyurethane nanocomposites. ” Polymer , 46(10), 3394-3406, 2005.
    連結:
  15. 33. C. Hepburn, “ Polyurethane Elastooers. ”, Appl.Sci., London and New York, 1982.
    連結:
  16. 36. H. V. Olphen,” Clay colloid Chemistry. “ New York : Chapter V, Wiley-Interface, 1997.
    連結:
  17. 37. M. Biswas, S. S. Ray,” Recent progress in synthesis and evaluation of polymer-montmorillonite nanocomposites.”,Adv. Polym. Sci., 155-167, 2001.
    連結:
  18. 39. W. J. John, “Organophilic Bentonites. I. Swelling in Organic Liquids.” J.Phys.Colloid Chem., 53(2), 294-306, 1949.
    連結:
  19. 41. R. A. Vaia, R. K. Teukolsky, and E. P. Giannelis,” Interlayer Structure and Molecular Environment of Alkylammonium Layered Silicates” Chem. Mater., 6(7), 1017- 1022, 1994.
    連結:
  20. 47. S. Komarneni,“ Nanocomposites ”, J. Mater. Chem., 2(12), 1219-1230, 1992.
    連結:
  21. 50. D. Tabuani, F. Bellucci, A. Terenzi, G. Camino,” Flame retarded Thermoplastic Polyurethane (TPU) for cable jacketing application. ” Polym. Degrad. Stab., 97(12), 2594-2601, 2012.
    連結:
  22. 52. G. Beyer,” Flame retardancy of thermoplastic polyurethane and polyvinyl chloride by organoclays. ” J. Fire Sci., 25(1), 65-78, 2007.
    連結:
  23. 53. M. Nayani, S. Gunashekar, N. Abu-Zahra,” Synthesis and characterization of polyurethane-nanoclay composites. ” Int. J. Polym. Sci., 717895, 5pages, 2013.
    連結:
  24. 54. M. Strankowski, J. Strankowska, M. Gazda, L. Piszczyk, G. Nowaczyk, S.Jurga,” Thermoplastic polyurethane/(organically modified montmorillonite) nanocomposites produced by in situ polymerization. ” eXPRESS Polym. Lett., 6(8), 610-619, 2012.
    連結:
  25. 55. A. K. Barick, D. K. Tripathy, ” Effect of organoclay on the morpho- logy, mechanical, thermal, and rheological properties of organophilic mont- morillonite nanoclay based thermoplastic polyurethane nanocomposites prepared by melt blending. ” Polym. Eng. Sci., 50(3), 484-498, 2010.
    連結:
  26. 57. A. K. Mishra, S. Chattopadhyay, P. R. Rajamohanan, G. B. Nando,” Effect of tethering on the structure-property relationship of TPU-dual modified Laponite clay nanocomposites prepared by ex-situ and in-situ techniques. ” Polymer, 52(4), 1071-1083, 2011.
    連結:
  27. 59. A. K. Barick, D. K. Tripathy,” Effect of organically modified layered silicate nanoclay on the dynamic viscoelastic properties of thermoplastic polyurethane nanocomposites. ” Appl. Clay Sci., 52(3), 312-321, 2011.
    連結:
  28. 60. M. S. Rama, S. Swaminathan,” Influence of structure of organic modifiers and polyurethane on the clay dispersion in nano- composites via in situ polymerization. ” J. Appl. Polym. Sci., 118(3), 1774-1786, 2010.
    連結:
  29. 64. D . Kong , C . E . Park ,” Real Time Exfoliation Behavior of Clay Layers in Epoxy-Clay Nanocomposites. ”, Chem. Mater., 15, 419-424, 2003.
    連結:
  30. 65. D. Ratna, O. Becker, R. Krishnamurthy, G. P. Simon,J. R. Varley, “ Nanocomposites based on a combination of epoxy resin,hyperbranche epoxy and a layered silicate. ”, Polymer, 44, 7449-7457, 2003.
    連結:
  31. 66. M. A. Hillmyer, P. M. Lipic, D. A. Hajduk, K. Almdal, F. S. Bates,” Self - Assembly and Polymerization of Epoxy Resin-Amphiphilic Block Copolymer Nanocomposites. ”, J. Am. Chem. Soc., 119, 2749-2750, 1997.
    連結:
  32. 67. J. H. Park, S. C. Jana,” Mechanism of Exfoliation of Nanoclay Particles in Epoxy-Clay Nanocomposites. ”,Macromolecules, 36, 2758-2768, 2003.
    連結:
  33. 69. J. Wen, G. L. Wilkes,“ Organic/Inorganlc Hybrid Network Materials by the Sol-Gel Approach. ”Chem. Mater., 8, 1667-1681 ,1996.
    連結:
  34. 71. Y. Fukushima, S. J. Inagaki,” Synthesis of an intercalated compound of montmorillonite and 6-polyamide. ”, Incl. Phenom., 5, 473-482, 1987.
    連結:
  35. 72. S. S. Ray, M. Okamoto., “Polymer/layered silicate nanocomposites: a review from preparation to processing.” Prog. Polymer. Sci.,28, 1539-1641, 2003.
    連結:
  36. 73. T. D. Fornes, P. J. Yoon, D. R. Paul, ” Polymer matrix degradation and color formation in melt processed nylon 6/clay nanocomposites. ” Polymer, 44(24), 7545-7556 ,2003.
    連結:
  37. 74. H. R. Dennis, D. L. Hunter, D. Chang, S. Kim, J. L.White, J. W. Cho, D. R. Paul, ” Effect of melt processing conditions on the extent of exfoliation in organoclay-based nanocomposites. ” Polymer, 42(23), 9513-9522 ,2001.
    連結:
  38. 75. X. Ma, H. Lu, G. Liang, H. Yan,” Rectorite/thermoplastic polyurethane nanocomposites: Preparation, characterization, and properties. ” J. Appl. Polym. Sci., 93(2), 608-614, 2004.
    連結:
  39. 76. F. Chavarria, D. R. Paul, ” Morphology and properties of thermoplastic polyurethane nanocomposites: Effect of organoclay structure. ” Polymer, 47(22), 7760-7773 ,2006.
    連結:
  40. 77. H. R. Dennis, D. L. Hunter, D. Chang, S. Kim, J. L. White, J. W. Cho, D. R. Paul,” Effect of melt processing on the extent of exfoliation in organoclay- based nanocomposites. ” Polymer, 42, 9513-9522, 2001.
    連結:
  41. 79. T. Y. Tsai, C. H. Li, C. H. Chang, W. H. Cheng, C. L. Hwang, R. J.Wu, “ Preparation of exfoliated polyester/clay nanocomposites. ” Adv. Mater., 17, 1769-1773, 2005.
    連結:
  42. 80. T. Lan, T. J. Pinnavaia, “ Clay-Reinforced Epoxy Nanocomposites. ”, Chem. Mater., 6, 2216-2219 ,1994.
    連結:
  43. 81. C. Zilg, R. Thomann, R. Miilhaupt, J. Finter,“ Polyurethane nanocomposites containing laminated anisotropic nanoparticles derived from organophilic layered silicates. ”Adv. Mater., 11, 49-52, 1999.
    連結:
  44. 82. C. C. Riccardi, R. J. J. Williams,“A kinetic scheme for an amine-epoxy reaction with simultaneous etherification. ” J. Appl. Polym. Sci., 32, 3445-3456, 1986.
    連結:
  45. 83. Y. Kojima,“ One-pot synthesis of nylon6-clay hybrid. ” J. Polym. Sci.: Patr A: Polym. Chem., 31, 1755-1758, 1993.
    連結:
  46. 84. 陳怡錦,”含銀之導電絹雲母之製備與性質研究”,中原大學化學工程研究所碩士論文,2007.
    連結:
  47. 85. R. A. Vaia, E. P Giannelis,” Lattice Model of Polymer Melt Intercalation in Organically-Modified Layered Silicates.” Macromolecules, 30, 7990-7999, 1997.
    連結:
  48. 86. Z. Tadmor, E. Broyer, “ Solids conveying in screw extruders. II. Nonisothermal model. ” Polym. Eng. Sci., 12(5), 378-386,1972.
    連結:
  49. 87. Y. Son,” Development of a novel microcompounder for polymer blends and nanocomposite.” J. Appl. Polym. Sci., 112, 609-619, 2009.
    連結:
  50. 89. R. G. Kuehni,” Industrial Color Difference:Progress and Problems.” Color Res. Appl., 15(5), 261-265, 1990.
    連結:
  51. 90. A. R. Robertson,” CIE Guidelines for Coordinated Research on Color- Difference Evaluation.” Color Res. Appl., 3, 149-151, 1978.
    連結:
  52. 92. 葉建麟,”奈米化無機層材以雙螺桿混煉製備聚烯烴奈米複材之開發與性質探討”,中原大學化學系碩士論文,2013.
    連結:
  53. 93. Y. I. Tien, K. H. Wei,” High-Tensile-Property Layered Silicates/Polyurethane Nanocomposites by Using Reactive Silicates as Pseudo Chain Extenders.” Macromolecules, 34 (26), 9045–9052, 2001.
    連結:
  54. 參考文獻
  55. 1. 臺灣橡膠暨彈性體工業同業公會,”橡膠彈性體工業”,工業材料,第36卷第3期,2012.
  56. 2. 陳思萍,”TPU反應壓出加工及其摻合物之研究”,國立台灣科技大學纖維及高分子工程技術研究所碩士論文,中華民國,1998.
  57. 4. X. Y. Ma, H. J. Lu, G. Z. Liang, H. X. Yan,” Preparation and properties of composites of clay/thermoplastic polyurethane elastomer. ” Cailiao Kexue Yu Gongcheng Xuebao, 21(2), 191-195, 2003.
  58. 5. 劉聖德,”熱塑性聚胺基甲酸酯/二氧化矽混成材料之製備及性質研究”,中國文化大學材料科學與奈米科技研究所碩士論文,2004.
  59. 14. C. H. Dan, W. T. Kim, J. H. Kim,” Effect of solvents on the properties of thermoplastic polyurethane/clay nanocomposites. ” Abstracts of Papers, 233rd ACS National Meeting, Chicago, IL, United States, March, 25-29, PMSE-352, 2007.
  60. 16. J. H. Kim, C. H. Dan, M. H. Lee, B. H. Min, “ Morphology and physical properties of thermoplastic polyurethane/clay nanocomposites. ” Abstracts of Papers, 231st ACS National Meeting, Atlanta, GA, United States, March 26-30, PMSE-321, 2006.
  61. 17. C. H. Dan, M. H. Lee, B. H. Min, J. H. Kim,” The morphology and physical properties of thermoplastic polyurethane/clay nanocomposites. ” PMSE Preprints, 94, 532-533, 2006.
  62. 18. S. C. Jana, A. Pattanayak,” Synthesis of thermoplastic polyurethane particle composites, nanocomposites and their manufacture. ” U.S. Pat. Appl. Publ., US 20070072991 A120070329, 2007.
  63. 23. A. Pattanayak, S. C. Jana, ”A study on intercalation and exfoliation of layered silicate nanoparticles in thermoplastic polyurethanes. ” Annual Technical Conference - Society of Plastics Engineers, 61st(Vol. 2), 1424-1428, 2003.
  64. 24. M. Lin, Q. Yu,” Advances in reactive extrusion. ” Xiandai Suliao Jiagong Yingyong, 15(2), 45-48, 2003.
  65. 25. 林國權,”高性能熱塑性彈性體市場現況與發展趨勢”,工研院產經中心IEK,2012.
  66. 26. 劉殿凱,”塑料彈性材料與加工”,化學工業出版社,2013.
  67. 27. 黃麗,”高分子材料(第二版) ”,化學工業出版社,2012.
  68. 28. 劉益軍,”聚氨酯樹脂及其應用”,化學工業出版社,2012.
  69. 29. Z. Wirpsza, “ Polyurethanes Chemistry, Techology and Application. ” Simon & Schuster , 1993.
  70. 30. 馬振基,“奈米科技材料原理與運用”, 全華科技圖書公司, 2003.
  71. 31. 謝國煌、韓錦鈴,”塑膠資訊”, 11期,第28頁,1997.
  72. 32. C. S. Schollenber, F. D. Stewart,” Advances in urethane Science and Technology. ”Ed.Frish, K. C. and Reegen, S. L., vol 2, 1937.
  73. 34. 傅明源,“聚氨酯彈性體及其應用”,化工工業出版社,2006.
  74. 35. A. Akelah, A. Moet,“ Synthesis of Organophilic Polymer-clay nanocomposites. ”, J. App. Polym. Scl: Applied Polymer Symposium, 55, 153-172, 1994.
  75. 38. D. H. Solomon, D.G. Hawthorne,” Chemistry of pigments and Fillers. ” JohnWiley&Sons, New York, 1983.
  76. 40. R. A. Messing, “ Immobilized Enzymes for Industrial Reactors. ”, Academic press, 2-3, 1975.
  77. 42. 肖衛東,何本橋,何培新,黃珊,”聚合物材料用化學助劑”,化學工業出版社,2004.
  78. 43. 張培萍,”膨潤土加工與應用”,化學工業出版社,2005.
  79. 44. 馬振基,趙珏,”高分子複合材料”,華香園出版社,2006.
  80. 45. 漆宗能,尚文宇,”聚合物/層狀矽酸鹽奈米複合材料”,台灣:五南圖書出版股份有限公司,2004.
  81. 46. 蔡宗燕,”奈米化學與科技應用,奈米級黏土/高分子複合材料”,工業技術研究院,化工所,2005.
  82. 48. 邢麗英,蔣詩才,李斌文,顏悅,何山,”隱形材料”,台灣:新文京開發出版股份有限公司,2006.
  83. 49. S. Bourbigot, F. Samyn, S. Bellayer, G. Fontaine, S. Duquesne,” Influence of the nanomorphology on the reaction to fire of flame retarded polymers. ” Modern Polymeric Materials for Environmental Applications, International Seminar, 5th, Krakow, Poland, May 15-17, 1, 49-58, 2013.
  84. 51. J. H. Koo, O. A. Ezekoye, J. C. Lee, W. K. Ho, M. C. Bruns,” Rubber-clay nanocomposites based on thermoplastic elastomers. ” Rubber-Clay Nanocomposites, 489-521, 2011.
  85. 56. M. Barmar, M. Barikani, M. Fereidounnia,” Study of polyurethane/clay nanocomposites produced via melt intercalation method.” Iran Polym. J., 15(9), 709-714, 2006.
  86. 58. B. P. Panda, S. K. Samal, S. Mohanty; S. K. Nayak, “ Dynamic mechanical, thermal and morphological properties of organoclay reinforced POM/TPU nanocomposites. ” Emerging Trends in Polymer Science and Technology, National Symposium, Kharagpur, India, Sept. 8-9, 44-48, 2006.
  87. 61. 張立德,”奈米材料”,台灣:五南出版社,2002.
  88. 62. 黃振球,尾琦邦宏,松浦一雄,”圖解高分子材料最前線”,台灣:全華科技圖書股份有限公司,2006.
  89. 63. 張國陽,”化工資訊” ,第15期,2001.
  90. 68. 蔡宗燕,”奈米科技導論,奈米級無機層狀材料”,葉瑞銘編著,台灣:高立圖書有限公司,2004.
  91. 70. 蔡宗燕,”奈米級無機材料的開發與應用”,化工資訊,第12卷,1998.
  92. 78. S. Nakamura,” Organic-Inorganic Polymer Hybrids (Update-I). ” Kansai Research Institute (KRI): Report No.4 of Phase VIII, Nov., Chapter 1, pp 1-9, 1996.
  93. 88. 薛朝華,”顏色科學與計算機測色配色”,北京:化學工業出版社,2003.
  94. 91. 林書堯,”色彩學”,台北:三民出版社,1983.