透過您的圖書館登入
IP:3.145.36.10
  • 學位論文

以雙螺桿混煉製備熱塑性聚氨基甲酸酯奈米複材之性質探討

Study on the Preparation and Characterization of Thermoplastic Polyurethane Nanocomposites by Twin Screw Process

指導教授 : 蔡宗燕
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本研究之主要目的,選用天然純化蒙脫土(CL120),利用溶膠-凝膠法(Sol-Gel)進行表面改質,在未添加於高分子基材前已經可以先行將天然黏土達到一定程度上的脫層結構,並將表面改質後的層狀材料,利用微型雙螺桿熔融混煉機(Microcompounder)與熱塑性聚氨基甲酸酯(Thermoplastic Polyurethane,TPU)製備成熱塑性聚氨基甲酸酯/改質型黏土奈米複合材料, 並以熱壓方式製備薄膜,進而檢測並評估各性質探討。 以傅立葉紅外線光譜儀(Fourier Transform Infrared,FT-IR)鑑定改質型蒙脫土與熱塑性聚氨基甲酸酯之官能基鍵結,結果證明TPU/CL120-SiO2奈米複合材料為相容型之混摻系統;以X-ray繞射光譜分析儀(X-ray Diffraction Instrument,XRD)及穿透式電子顯微鏡(Transmission Electron Microscopy,TEM)觀察其分散性,可得知TPU/CL120-SiO2是以小部份插層、大部分脫層型態;TPU/CL120-SiO2-5phr其熱裂解溫度(Decomposed Temperature,Td)最高提升8.3 ℃,自305.8 ℃提升至314.1 ℃,而TPU/CL120-SiO2-5phr玻璃轉換溫度(Glass Transition Temperature,Tg)以微差掃描熱分析儀(Differential Scanning Calorimetry,DSC)檢驗結果,提升5.18 ℃,自-39.30 ℃提高至-34.12 ℃,而在動態機械分析儀(Dynamic Mechanical Analyzer,DMA)中,提升8.88 ℃,自-42.55 ℃提高至-33.67 ℃;在機械性質方面,以分散性最佳之TPU/CL120-SiO2-5phr,其儲存模數提升最高約83 %,,而拉力試驗方面,拉伸強度(Tensile Strength)、Modulus與耐磨耗(Abrasion Resistance)以TPU/CL120-SiO2-9phr最佳,提升效果68.13 %,100% Modulus提升效果53.09%, 300% Modulus提升效果42.75%,耐磨耗測試提升效果73.08 %,伸長率以TPU/CL120-SiO2-5phr提升效果17.9 %較佳;光學性質方面,以TPU/CL120-SiO2-5phr,紫外光有效阻隔4.9 %(375nm)和10.6 %(320nm),且保有對可見光之高穿透度較理想化;耐老化方面,TPU/CL120-SiO2-5phr之耐黃變係數(△YI)由原本空白的16.68降低至13.20,耐黃變效果提升至20.86 %,色差值(△E) 則由原本空白的11.26降低至8.72,色差效果提升 22.56 %,老化衰退程度由原本空白之25 %減緩至19 %,耐老化效果提升8%。 因此本實驗中的熱塑性聚氨基甲酸酯/改質型黏土奈米複合材料顯現出可有效改善材料的多種特性。

並列摘要


This work focused on the pristine sodium montmorillonite clay (CL120) using the sol-gel method for surface modification, without the addition of the polymer to the substrate before pristine sodium montmorillonite clay can reach a certain degree of delamination of the structure. Surface modification of layered materials applied to thermoplastic polymer nanocomposites using by twin screw micro-compounder with thermoplastic polyurethane (TPU), and then made thin film of polymer nanocomposites by hot pressure method. Fourier transform infrared spectroscopy (FT-IR) is to identify the functional groups of modified montmorillonite, which would be bonded to the thermoplastic polyurethane and the results show TPU/CL120-SiO2 nanocomposites is compatible system for the blending process. X-ray diffraction pattern (XRD) and transmission electron microscopy (TEM) are applied to observe the dispersion of composites; TPU/CL120-SiO2 performed a small part of intercalation and majority of delamination patterns of inorganic layered materials. The decomposition temperature (Td) of TPU/CL120-SiO2- 5phr was maximum increased 8.3 ℃ from 305.8 ℃ to 314.1 ℃. The glass transition temperature (Tg) of TPU/CL120-SiO2-5phr in differential scanning calorimetry (DSC) was increased 5.18 ℃from -39.30 ℃to -34.12 ℃, and in the dynamic mechanical analyzer (DMA) was increased 8.88 ℃ from -42.55 ℃ to -33.67 ℃. The storage modulus of TPU/CL120-SiO2-5phr was increased 83 % due to the exfoliate nanostructure. Tensile strength, Modulus and Abrasion resistance of TPU/CL120-SiO2-9phr was the best, the tensile strength increased 68.13 % , 100% modulus increased 53.09 % and 300% modulus increased 42.75 %, the abrasion resistance increased 73.08%, and the elongation of TPU/CL120-SiO2-5phr enhance the better effect of 17.9%. In the optical properties, the UV resistance of TPU/CL120-SiO2-5phr was separately 4.9 % (375nm) and 10.6 % (320nm), and maintains a high visible light transmittance than the idealized. In the ultraviolet aging properties, TPU/CL120-SiO2-5phr of the resistance yellowing coefficient (△ YI) decreased from 16.68 to 13.20, yellowing resistance effect was increased to 20.86 %, TPU/CL120-SiO2-5phr of the color difference (△ E) decreased from 11.26 to 8.72, color effects to enhance 22.56 %, the degree of aging decreased from 25% to 19%,anti-aging effects to enhance 8%. Therefore, the performance of TPU/clay nanocomposites has shown the great improvement in various properties.

參考文獻


84. 陳怡錦,”含銀之導電絹雲母之製備與性質研究”,中原大學化學工程研究所碩士論文,2007.
92. 葉建麟,”奈米化無機層材以雙螺桿混煉製備聚烯烴奈米複材之開發與性質探討”,中原大學化學系碩士論文,2013.
8. 呂忠韓,” TPU耐黃變劑之開發”,國立台北科技大學有機高分子研究所碩士論文,2009.
3. S. L. Cooper, A. V. Tobolsky, ” Properties of linear elastomeric polyurethanes. ” J. Appl. Polym. Sci., 10(12), 1837-1844, 1966.
6. A. Pattanayak, S. C. Jana,” Synthesis of thermoplastic polyurethane nanocomposites of reactive nanoclay by bulk polymerization methods. ” Polymer, 46(10), 3275-3288, 2005.

延伸閱讀