Title

微型鑽孔刀具壽命灰色預測系統之開發

Translated Titles

The development of a Grey tool life prediction system for micro drilling operation

Authors

郭家豪

Key Words

尺寸公差 ; 微型鑽孔 ; 灰色生成 ; 灰色預測 ; dimensional tolerances ; micro drill ; grey generation ; grey prediction

PublicationName

中原大學工業與系統工程研究所學位論文

Volume or Term/Year and Month of Publication

2014年

Academic Degree Category

碩士

Advisor

黃博滄

Content Language

繁體中文

Chinese Abstract

摘 要 隨著近年來市場趨勢的改變,機械加工從過去的大量生產,漸漸演變成了少量高品質的製造取向,這也使得品質的管控與生產前的預測行為越來越受到重視,因此近年來各界紛紛提出了各種方法進行預測,像是傳統的統計預測、模擬建模、回歸分析及各種軟性計算的方式,來建構預測系統,且精準度也有明顯的上升。但這些預測模型有個極大的缺點,就是皆需要大量的數據進行建模,對於目前及時少量生產的生產模式極為不利,不僅需耗費大量的時間收集數據,且一旦加工設置改變,就必須重新建模或調整,使用極為不便,這也是目前業界預測系統極為少用的原因之一。故本研究將透過灰色理論,針對微型鑽孔建構一刀具壽命預測系統,希望透過少量數據及可預測出刀具的狀況與壽命,且不受加工設定改變的影響。 本研究所開發之刀具壽命灰色預測系統,是透過灰色生成,將輸入數據顯著化其趨勢,並利用灰色預測其小樣本預測特性作為基本架構,建構及時預測系統。灰色預測是利用累加生成序列,利用數據間的趨勢特性建立小型模型預測資料。在本研究中是運用於CNC鑽孔加工,透過少量的孔徑數據,去預測刀具使用壽命,不僅不需考量使用何種刀具、工件、加工參數,甚至加工環境,皆可迅速的預測出此加工設定下刀具的使用壽命。 為了證實所提出的方法其準確性與可靠性,本研究將設置三種不同的刀具、工件與加工參數,進行微型鑽孔加工,先透過光學測量儀測量加工孔徑,並將少量孔徑值投入灰色預測系統,進行孔徑大小的趨勢預測,藉此推斷在此設定下刀具的使用壽命,並探討其準確性,以驗證本研究所提出之預測系統其可行性。

English Abstract

Abstract As the market trend changes over the years, production orientation of machining process has evolved from mass production to high quality, small-scale production; therefore, quality control and pre-production prediction is becoming increasingly important. Various prediction methods such as traditional statistical forecasting, simulation modeling, regression analysis and soft computing, have been proposed in recent years to construct prediction systems, which demonstrate significant increase in accuracy. However, there is a huge disadvantage to these prediction models. That is they require large amount of data to perform modeling, which is unfavorable to small-scale productions. Not only does it take much time for these systems to collect data, but remodeling or readjustment is required whenever the settings are changed. Due to the inconvenience, these prediction systems are rarely used in the industry. Therefore, in this research, we hope to construct a tool life prediction system for micro drilling process, which is able to predict a tool’s condition and operating life based on only a small amount of data and without the influence of the changed process settings. The Grey Micro Drill Tool Life Prediction System proposed in this research is developed through grey generating, a method which emphasizes the input data trend and uses its small sample feature as the fundamental structure for building a real time prediction system. Grey prediction is a small-scale prediction model built upon accumulated generating sequence and the forecasting characteristics among data. It is used on CNC drilling process in this research in which a tool’s operating life is predicted based on a small amount of hole diameter data. The grey prediction system can quickly predict a tool’s operating life under specific processing settings without considering the type of tool and work part being used, the machining parameters and environment. To prove the proposed method is both accurate and reliable, three different sets of tools, work part and machining parameters are used to perform micro drilling. First, an optical instrument is used to measure the diameter of the machined holes, and a small amount of the measured data are placed in the grey prediction system for the forecasting of hole sizes. Based on the information obtained, we can determine a tool’s operating life and investigate its accuracy to verify the feasibility of the prediction system proposed in this research.

Topic Category 電機資訊學院 > 工業與系統工程研究所
工程學 > 工程學總論
Reference
  1. Abu-Mahfouz, I. (2003). Drilling wear detection and classification using vibration signals and artificial neural network. International Journal of Machine Tools and Manufacture, 43(7), 707-720.
    連結:
  2. Ahilan, C., Kumanan, S., Sivakumaran, N., & Edwin Raja Dhas, J. (2013). Modeling and prediction of machining quality in CNC turning process using intelligent hybrid decision making tools. Applied Soft Computing, 13(3), 1543-1551.
    連結:
  3. Arevalo, Y., & Fernandes, A. (2012). Quantification of Drillstring-Integrity-Failure Risk Using Real-Time Vibration Measurements. Spe Drilling & Completion, 27(2), 216-222.
    連結:
  4. Arul, S., Vijayaraghavan, L., & Malhotra, S. K. (2007). Online monitoring of acoustic emission for quality control in drilling of polymeric composites. Journal of Materials Processing Technology, 185(1-3), 184-190.
    連結:
  5. Benardos, P. G. & G. C. Vosniakos (2002). "Prediction of surface roughness in CNC face milling using neural networks and Taguchi's design of experiments." Robotics and Computer Integrated Manufacturing 18, 343-354.
    連結:
  6. Bustillo, A., & Correa, M. (2012). Using artificial intelligence to predict surface roughness in deep drilling of steel components. Journal of Intelligent Manufacturing, 23(5), 1893-1902.
    連結:
  7. Byrne, G., & O’Donnell, G. E. (2007). An Integrated Force Sensor Solution for Process Monitoring of Drilling Operations. CIRP Annals - Manufacturing Technology, 56(1), 89-92.
    連結:
  8. Caballero-Ruiz, A., Ruiz-Huerta, L., Baidyk, T., & Kussul, E. (2007). Geometrical error analysis of a CNC micro-machine tool. Mechatronics, 17(4-5), 231-243.
    連結:
  9. Chungchoo, C. & D. Saini (2002). "On-line tool wear estimation in CNC turning operations using fuzzy neural network model." International Journal of Machine Tools & Manufacture 42, 29-40.
    連結:
  10. D’Addona, D. M., & Teti, R. (2013). Image Data Processing via Neural Networks for Tool Wear Prediction. Procedia CIRP, 12, 252-257.
    連結:
  11. Ghosh, N., Ravi, Y. B., Patra, A., Mukhopadhyay, S., Paul, S., Mohanty, A. R., & Chattopadhyay, A. B. (2007). Estimation of tool wear during CNC milling using neural network-based sensor fusion. Mechanical Systems and Signal Processing, 21(1), 466-479.
    連結:
  12. Gill, S. S., Singh, R., Singh, J., & Singh, H. (2012). Adaptive neuro-fuzzy inference system modeling of cryogenically treated AISI M2 HSS turning tool for estimation of flank wear. Expert Systems with Applications, 39(4), 4171-4180.
    連結:
  13. Gokulachandran, J., & Mohandas, K. (2012). Application of Regression and Fuzzy Logic Method for Prediction of Tool Life. Procedia Engineering, 38, 3900-3912.
    連結:
  14. Groover, M. P. (2007). Fundamentals of Modern Manufacturing. Asia: Wiley.
    連結:
  15. Haber, R. E., Haber-Haber, R., Jiménez, A., & Galán, R. (2009). An optimal fuzzy control system in a network environment based on simulated annealing. An application to a drilling process. Applied Soft Computing, 9(3), 889-895.
    連結:
  16. Hirooka, T., Kobayashi, T., Hakotani, A., Sato, R., & Shirase, K. (2012). Surface Roughness Control Based on Digital Copy Milling Concept to Achieve Autonomous Milling Operation. Procedia CIRP, 4, 35-40.
    連結:
  17. Hsu, L.-C. (2011). "Using improved grey forecasting models to forecast the output of opto-electronics industry." Expert Systems with Applications.
    連結:
  18. Jantunen, E. (2002). "A summary of methods applied to tool condition monitoring in
    連結:
  19. Kaya, B., Oysu, C., Ertunc, H. M., & Ocak, H. (2012). A support vector machine-based online tool condition monitoring for milling using sensor fusion and a genetic algorithm. Proceedings of the Institution of Mechanical Engineers Part B-Journal of Engineering Manufacture, 226(A11), 1808-1818.
    連結:
  20. Kayacan, E., Ulutas, B., & Kaynak, O. (2010). Grey system theory-based models in time series prediction. Expert Systems with Applications, 37(2), 1784-1789.
    連結:
  21. Kıvak, T., Samtaş, G., & Çiçek, A. (2012). Taguchi method based optimisation of drilling parameters in drilling of AISI 316 steel with PVD monolayer and multilayer coated HSS drills. Measurement, 45(6), 1547-1557.
    連結:
  22. Klaic, M., Staroveski, T., & Udiljak, T. (2014). Tool Wear Classification Using Decision Treesin Stone Drilling Applications: A Preliminary Study. Procedia Engineering, 69, 1326-1335.
    連結:
  23. Kondo, E., & Shimana, K. (2012). Monitoring of prefailure phase and detection of tool breakage in micro-drilling operations. Procedia CIRP, 1, 581-586.
    連結:
  24. Lin, C. T., & Yang, S. Y. (2003). Forecast of the output value of Taiwan's opto-electronics industry using the Grey forecasting model. Technological Forecasting & Social Change, 70, 177-186.
    連結:
  25. Lin, S. C., & Lin, R. J. (1996). Tool wear monitoring in face milling using force signals. . 198(1-2), 136-142.
    連結:
  26. Maiyar, L. M., et al. (2013). "Optimization of Machining Parameters for end Milling of Inconel 718 Super Alloy Using Taguchi based Grey Relational Analysis." Procedia Engineering, 64, 1276-1282.
    連結:
  27. Moon, J.-S., Yoon, H.-S., Lee, G.-B., & Ahn, S.-H. (2014). Effect of backstitch tool path on micro-drilling of printed circuit board. Precision Engineering, 38(3), 691-696.
    連結:
  28. Onwubolu, G. C., & Kumar, S. (2006). Response surface methodology-based approach to CNC drilling operations. Journal of Materials Processing Technology, 171(1), 41-47.
    連結:
  29. Pai, T. Y., Tsai, Y. P., Lo, H. M., Tsai, C. H., & Lin, C. Y. (2007). Grey and neural network prediction of suspended solids and chemical oxygen demand in hospital wastewater treatment plant effluent. Computers & Chemical Engineering, 31(10), 1272-1281.
    連結:
  30. Rizal, M., Ghani, J. A., Nuawi, M. Z., & Haron, C. H. C. (2013). The Application of I-kazTM-based Method for Tool Wear Monitoring Using Cutting Force Signal. Procedia Engineering, 68, 461-468.
    連結:
  31. Sarıkaya, M. & A. Güllü (2014). "Taguchi design and response surface methodology based analysis of machining parameters in CNC turning under MQL." Journal of Cleaner Production, 65, 604-616.
    連結:
  32. Shahrom, M. S., Yahya, N. M., & Yusoff, A. R. (2013). Taguchi Method Approach on Effect of Lubrication Condition on Surface Roughness in Milling Operation. Procedia Engineering, 53, 594-599.
    連結:
  33. Shanmughasundaram, P., & Subramanian, R. (2014). Study of parametric optimization of burr formation in step drilling of eutectic Al–Si alloy–Gr composites. Journal of Materials Research and Technology, 3(2), 150-157.
    連結:
  34. Tang, H. W. V., & Yin, M. S. (2012). Forecasting performance of grey prediction for education expenditure and school enrollment. Economics of Education Review, 31(4), 452-462.
    連結:
  35. Tian, W., Hu, M., & Li, C. (2014). Fault Prediction Based on Dynamic Model and Grey Time Series Model in Chemical Processes. Chinese Journal of Chemical Engineering, 22(6), 643-650.
    連結:
  36. Tobon-Mejia, D. A., Medjaher, K., & Zerhouni, N. (2012). CNC machine tool's wear diagnostic and prognostic by using dynamic Bayesian networks. Mechanical Systems and Signal Processing, 28, 167-182.
    連結:
  37. Wang, K. C. (2011). A hybrid Kansei engineering design expert system based on grey system theory and support vector regression. Expert Systems with Applications, 38(7), 8738-8750.
    連結:
  38. Yin, M.-S. (2013). "Fifteen years of grey system theory research: A historical review and bibliometric analysis." Expert Systems with Applications 40(7): 2767-2775.
    連結:
  39. Yin, M.S., & Tang, H.-W. V. (2013). On the fit and forecasting performance of grey prediction models for China’s labor formation. Mathematical and Computer Modelling, 57(3-4), 357-365.
    連結:
  40. Yongchen, P., Qingchang, T., & Zhaojun, Y. (2006). A study of dynamic stresses in micro-drills under high-speed machining. International Journal of Machine Tools and Manufacture, 46(14), 1892-1900.
    連結:
  41. Zhaojun, Y., Wei, L., Yanhong, C., & Lijiang, W. (1998). Study for increasing micro-drill reliability by vibrating drilling. Reliability Engineering and System Safety, 61, 229-233.
    連結:
  42. Zheng, Y., Zheng, X., Gao, Z., & Zhang, Y. (2013). Prediction of Seawater Quality in Rigs-to-Reefs Area Based on Grey Systems Theory. Procedia Environmental Sciences, 18, 236-242.
    連結:
  43. 何建霖. (2001). 電腦輔助塑膠模具設計製造 能力本位訓練教材 訂定公差: 行政院勞工委員會職業訓練局.
    連結:
  44. Reference
  45. Davim, J. P. (2011). Modern machining technology, Woodhead Publishing.
  46. drilling." International Journal of Machine Tools & Manufacture, 42, 997-1010.
  47. Liu, S. F., & Lin, Y. (2006). Grey Information. London: Springer.
  48. Suh, S.-H., et al. (2008). Theory and Design of CNC Systems, Springer.
  49. 何正義, 姚威宏, 鄭朝旭, 蕭肇凱, & 聶國禎. (2011). 機械製造. 新北市: 高立圖書有限公司.
  50. 呂淮熏. (2007). 微細鑽削鑽削性能分析與鑽削製程最適化設計.
  51. 梁為翔. (2004). 以微鑽頭鑽削PCB板之最佳鑽削參數及其磨耗檢測之研究.(論文)
  52. 陳天生, & 黃寶建. (2005). 數控工具機原理與實習. 新北市: 高立圖書有限公司.
  53. 溫坤禮, 張簡士琨, 葉鎮愷, 王建文, & 林慧珊. (2006). MATLAB在灰色系統理論的應用. 台北市, 全華科技圖書股份有限公司.
  54. 溫坤禮, 趙忠賢, 張宏志, 陳曉瑩, & 溫惠筑. (2009). 灰色理論與應用. 台北市: 五南出版社.
  55. 鄧聚龍. (2000). 灰色系統理論與應用. 台北市, 高立圖書有限公司.
  56. 鄧聚龍. (2002). 灰理論基礎. 中國: 華中科技大學出版社.
  57. 鄧聚龍, & 郭洪. (1996). 灰預測原理與應用. 台北市, 全華科技圖書股份有限公司.
  58. 鄧聚龍, 郭洪, 溫坤禮, 張廷政, & 張偉哲. (1999). 灰預測模型方法與應用. 台北
  59. 市, 高立圖書有限公司.
  60. 潘文超. (2006). 以灰色預測與類神經模糊推論系統預測台股加權指數之研究.
  61. 遠東學報, 2(23)
  62. 黃惠隆, 翁忠川,& 黃月貞.(2004). 以車輛偵測器推估旅行時間之研究 — 以北二高為例. 中華技術季刊,
  63. 7(63)
Times Cited
  1. 林明慶(2016)。建構田口殘差修正GM(1,1)灰模型之微鑽孔刀具壽命預測系統。中原大學工業與系統工程研究所學位論文。2016。1-89。