Title

鈣鈦礦結構太陽能電池之研製

Translated Titles

The study of Perovskite Structure Solar Cells

Authors

鄧琮璋

Key Words

太陽能電池 ; 鈣鈦礦結構 ; Solar Cells ; Perovskite Structure

PublicationName

中原大學化學研究所學位論文

Volume or Term/Year and Month of Publication

2014年

Academic Degree Category

碩士

Advisor

王宏文

Content Language

繁體中文

Chinese Abstract

本研究是以鈣鈦礦結構材料 - CH3NH3PbI3作為光吸收材料,以往在染敏太陽能電池中,常以有機染料作為光敏材料,但有鑑於有機染料的高價格以及合成上較為不易,因此實驗取代傳統之有機染料之光敏劑,作為太陽能電池應用且發展成為新一代鈣鈦礦太陽能電池。 於研究第一部份中介紹如何製備鈣鈦礦結構材料,並且以XRD、TGA等儀器去做材料的性質測定,確認只要以簡單的方式且不需經由高溫等耗能設備即可合成出可應用於太陽能電池上之鈣鈦礦結構材料。 於研究第二部份則是鈣鈦礦結構材料應用於太陽能電池中表現出的光電特性結果,在這邊我們以溶液沉積法和連續沉積法兩種不同方式使鈣鈦礦結構材料沉積於我們的太陽能電池TiO2薄膜中,並且得到不同之效率結果,於實驗得到之效率結果為4.93%,與傳統染料敏化太陽能電池之效率(=5.86%)相比,已可達到80%以上之光電轉換效率。 於研究第三部分中,雖然本實驗室以鈣鈦礦結構材料作為光吸收材料在光電轉換效率上已可接近傳統使用有機染料之太陽能電池效率,但因鈣鈦礦結構材料易受水氣、電解液中有機溶劑等影響而分解,導致其在光電表現上衰退迅速,因此此部分我們試著以全固態方式製備取代傳統之太陽能電池需要電解液之缺點,並將以往之電解質以電洞傳導材料(HTMs)取代,使鈣鈦礦太陽能電池在光電轉換效率上能更佳的優化。

English Abstract

This study is based on perovskite material - CH3NH3PbI3 as a light absorbing material. In a traditional dye-sensitized solar cell, the organic dye is often used as a photosensitizer. In the view of the organic dyes are high priced and difficult to be synthesized, the present experiments synthesized inorganic light absorber to instead of the traditional organic dye photosensitizers. In the first part of the study, we introduce how to prepare perovskite structure material, and confirm using X-ray diffraction spectroscopy and Thermogravimetric analysis. It did not require high temperature and energy-consuming equipment to synthesize the perovskite materials for the use in solar cells. In the second part of the study, we have employed the perovskite materials in the solar cells and measured its photovoltaic properties. We used solution deposition method and sequential deposition method to deposit the perovskite structure material on the TiO2 film to prepare the solar cell with the structure of traditional DSSC and liquid electrolyte. The results of this experiment achieved =4.93%, more than 80% of the photoelectric conversion efficiency of the traditional dye-sensitized solar cell efficiency (=5.86%). In the third part of the study, since the perovskite materials are susceptible to the moisture and decompose easily in the electrolyte solvent, leading to a rapid decline of the performance. Preparation of all-solid solar cells was done to replace the traditional dye-sensitized solar cell to avoid the disadvantages of electrolyte. Hole-conducting materials (HTMs) such as spiro-MeOTAD in perovskite solar cells are demonstrated to optimize the efficiency.

Topic Category 基礎與應用科學 > 化學
理學院 > 化學研究所
Reference
  1. 2.B. O’Regan and M. Grätzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films.” Nature, 1991, 353, 737-740.
    連結:
  2. 3.M. Grätzel, “Solar Energy Conversion by Dye-Sensitized Photovoltaic Cells.” Inorg. Chem., 2005, 44, 6841-6851.
    連結:
  3. 4.Z. S. Wang, M. Yanagida, K. Sayama and H. Sugihara, “Electronic-Insulating Coating of CaCO3 on TiO2 Electrode in Dye-Sensitized Solar Cells:  Improvement of Electron Lifetime and Efficiency.” Chem. Mater., 2006, 18, 2912-2916.
    連結:
  4. 5.A. Yella, H. W. Lee, H. N. Tsao, C. Yi, A. K. Chandiran, Md. K. Nazeeruddin, W. G. Diau, C. Y. Yeh, S. M. Zakeeruddin and M. Grätzel, “Porphyrin-Sensitized Solar Cells with Cobalt (II/III)–Based Redox Electrolyte Exceed 12 Percent Efficiency.” Science, 2011, 334, 629-634.
    連結:
  5. 6.D.B. Mitzi, C.A. Feild, W.T.A. Harrison and A.M. Guloy, “Conducting Tin Halides with a Layered Organic-Based Perovskite Structure.” Nature, 1994, 369, 467.
    連結:
  6. 7.D.B. Mitzi, C.A. Feild, Z. Schlesinger and R.B. Laibowitz, “Transport, Optical and Magnetic Properties of the Conducting Halide Perovskite CH3NH3SnI3.” J. Solid State Chem., 1995, 114, 159.
    連結:
  7. 8.D.B. Mitzi, S. Wang, C.A. Feild, C.A. Chess and A.M. Guloy, “Conducting Layered Organic-Inorganic Halides Containing <110>-Oriented Perovskite Sheets.” Science, 1995, 267, 1473.
    連結:
  8. 9.A. Kojima, K. Teshima, Y. Shirai and T. Miyasaka, “Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells.” J. Am. Chem. Soc., 2009, 131, 6050-6051.
    連結:
  9. 10.L. Etgar, P. Gao, Z. Xue, Q. Peng, A. K. Chandiran, B. Liu, Md. K. Nazeeruddin and M. Grätzel, “Mesoscopic CH3NH3PbI3/TiO2 Heterojunction Solar Cells.” J. Am. Chem. Soc., 2012, 134, 17396-17399.
    連結:
  10. 11.W. A. Laban and L. Etgar, “Depleted hole conductor-free lead halide iodide heterojunction solar cells.” Energy Environ. Sci., 2013, 6, 3249-3253.
    連結:
  11. 12.J. Burschka, N. Pellet, S. J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin and M. Grätzel, “Sequential deposition as a route to high-performance perovskite-sensitized solar cells.” Nature, 2013, 499, 316-319
    連結:
  12. 13.M. Liu, M. B. Johnston and H. J. Snaith, “Efficient planar heterojunction perovskite solar cells by vapour deposition.” Nature, 2013, 501, 395-398.
    連結:
  13. 14.N. G. Park, “Organometal Perovskite Light Absorbers Toward a 20% Efficiency Low-Cost Solid-State Mesoscopic Solar Cell.” J. Phys. Chem. Lett., 2013, 4, 2423-2429.
    連結:
  14. 15.M. Grätzel, “Photoelectrochemical cells.” Nature, 2001, 414, 338-344.
    連結:
  15. 16.M. Grätzel, “Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells.” J. Photochem. Photobiol. A: Chem., 2004, 164, 3-14.
    連結:
  16. 17.A. L. Linsebigler, G. Lu and Jr. J. T. Yates, “Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results.” Chem. Rev., 1995, 95, 735-758.
    連結:
  17. 18.M. Pagliaro, G. Palmisano, R. Ciriminna and V. Loddob, “Nanochemistry aspects of titania in dye-sensitized solar cells.” Energy Environ. Sci., 2009, 2, 838-844.
    連結:
  18. 19.A. B. Walker, L.M. Peter, K. Lobato and P. J. Cameron, “Analysis of Photovoltage Decay Transients in Dye-Sensitized Solar Cells.” J. Phys. Chem. B, 2006, 110, 25504-25507.
    連結:
  19. 20.S. Y. Huang, G. Schlichthörl, A. J. Nozik, M. Grätzel and A. J. Frank, “Charge Recombination in Dye-Sensitized Nanocrystalline TiO2 Solar Cells.” J. Phys. Chem. B, 1997, 101, 2576-2582.
    連結:
  20. 21.C. J. Barbé, F. Arendse, P. Comte, M. Jirousek, F. Lenzmann, V. Shklover and M. Grätzel, “Nanocrystalline Titanium Oxide Electrodes for Photovoltaic Applications.” J. Am. Ceram. Soc., 1997, 80, 3157-3171.
    連結:
  21. 22.N.G. Park, J. van de Lagemaat and A. J. Frank, “Comparison of Dye-Sensitized Rutile- and Anatase-Based TiO2 Solar Cells.” J. Phys. Chem. B, 2000, 104, 8989-8994.
    連結:
  22. 23.A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo and H. Pettersson, “Dye-Sensitized Solar Cells.” Chem. Rev., 2010, 110, 6595-6663.
    連結:
  23. 24.Md. K. Nazeeruddin, R. Humphry-Baker, P. Liska and M. Grätzel, “Investigation of Sensitizer Adsorption and the Influence of Protons on Current and Voltage of a Dye-Sensitized Nanocrystalline TiO2 Solar Cell.” J. Phys. Chem. B, 2003, 107, 8981-8987.
    連結:
  24. 25.X. Fang, T. Ma, G. Guan, M. Akiyama, T. Kida and E. Abe, “Effect of the thickness of the Pt film coated on a counter electrode on the performance of a dye-sensitized solar cell.” J. Electroanal. Chem., 2004, 570, 257-263.
    連結:
  25. 26.J. H. Im, C. R. Lee, J. W. Lee, S. W. Park and N. G. Park, “6.5% efficient perovskite quantum-dot-sensitized solar cell.” Nanoscale, 2011, 3, 4088-4093.
    連結:
  26. 27.H. S. Kim, J. W. Lee, N. Yantara, P. P. Boix, S. A. Kulkarni, S. Mhaisalkar, M. Grätzel and N. G. Park, “High Efficiency Solid-State Sensitized Solar Cell-Based on Submicrometer Rutile TiO2 Nanorod and CH3NH3PbI3 Perovskite Sensitizer.” Nano Lett., 2013, 13, 2412-2417.
    連結:
  27. 28.M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami and H. J. Snaith, “Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites.” Science, 2012, 338, 643-647.
    連結:
  28. 29.J. H. Heo, S. H. Im, J. H. Noh, T. N. Mandal, C. S. Lim, J. A. Chang, Y. H. Lee, H. J. Kim, A. Sarkar, M. K. Nazeeruddin, M. Grätzel and S. I. Seok, “Efficient inorganic–organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors .” Nat. Photonics, 2013, 7, 486-491.
    連結:
  29. 30.S. Kazim, M. K. Nazeeruddin, M. Grätzel and S. Ahmad, “Perovskite as Light Harvester: A Game Changer in Photovoltaics.” Angew. Chem. Int. Ed., 2014, 53, 2-15.
    連結:
  30. 31.H. S. Kim, C. R. Lee, J. H. Im, K. B. Lee, T. Moehl, A. Marchioro, S. J. Moon, R. Humphry-Baker, J. H. Yum, J. E. Moser, M. Grätzel and N. G. Park, “Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9% .” Sci. Rep., 2012, 2, 591.
    連結:
  31. 32.J. H. Noh, N. J. Jeon, Y. C. Choi, Md. K. Nazeeruddin, M. Grätzel and S. Il Seok, “Nanostructured TiO2/CH3NH3PbI3 heterojunction solar cells employing spiro-OMeTAD/Co-complex as hole- transporting material.” J. Mater. Chem. A, 2013, 1, 11842-11847.
    連結:
  32. 33.J. Qiu, Y. Qiu, K. Yan, M. Zhong, C. Mu, H. Yan and S. Yang, “All-solid-state hybrid solar cells based on a new organometal halide perovskite sensitizer and one-dimensional TiO2 nanowire arrays.” Nanoscale, 2013, 5, 3245-3248.
    連結:
  33. 34.D. Bi, S. J. Moon, L. Häggman, G. Boschloo, L. Yang, E. M. J. Johansson, M. K. Nazeeruddin, M. Grätzel and A. Hagfeldt, “Using a two-step deposition technique to prepare perovskite (CH3NH3PbI3) for thin film solar cells based on ZrO2 and TiO2 mesostructures.” RSC Adv., 2013, 3, 18762-18766.
    連結:
  34. 35.J. W. Crossland, N. Noel, V. Sivaram, T. Leijtens, J. A. Alexander-Webber and H. J. Snaith, “Mesoporous TiO2 single crystals delivering enhanced mobility and optoelectronic device performance.” Nature, 2013, 495, 215-220.
    連結:
  35. 36.J. M. Ball, M. M. Lee, A. Hey and H. J. Snaith, “Low-temperature processed meso-superstructured to thin-film perovskite solar cells.” Energy Environ. Sci., 2013, 6, 1739-1743.
    連結:
  36. 37.E. Edri, S. Kirmayer, D. Cahen and G. Hodes, “High Open-Circuit Voltage Solar Cells Based on Organic–Inorganic Lead Bromide Perovskite.” J. Phys. Chem. Lett., 2013, 4, 897-902.
    連結:
  37. 38.B. Cai, Y. Xing, Z. Yang, W. H. Zhang and J. Qiu, “High performance hybrid solar cells sensitized by organolead halide perovskites.” Energy Environ. Sci., 2013, 6, 1480-1485.
    連結:
  38. 39.J. H. Noh, S. H. Im, J. H. Heo, T. N. Mandal and S. I. Seok, “Chemical Management for Colorful, Efficient, and Stable Inorganic–Organic Hybrid Nanostructured Solar Cells.” Nano Lett., 2013, 13, 1764-1769.
    連結:
  39. 40.R. Kern, R. Sastrawan, J. Ferber, R. Stangl, J. Luther, “Modeling and interpretation of electrical impedance spectra of dye solar cells operated under open-circuit conditions.” Electrochimica Acta, 2002, 47, 4213-42225.
    連結:
  40. 41.K. Manseki, T. Ikeya, A. Tamura, T. Ban, T. Sugiura and T. Yoshida, “Mg-doped TiO2 nanorods improving open-circuit voltages of ammonium lead halide perovskite solar cells.” RSC Adv., 2014, 4, 9652-9655.
    連結:
  41. 42.H. S. Kim, S. H. Im and N. G. Park, “Organolead Halide Perovskite: New Horizons in Solar Cell Research.” J. Phys. Chem. C, 2014, 118, 5615-5625.
    連結:
  42. 43.Y. Zhao, A. M. Nardes, and K. Zhu, “Solid-State Mesostructured Perovskite CH3NH3PbI3 Solar Cells:Charge Transport,Recombination, and Diffusion Length.” J. Phys. Chem. Lett., 2014, 5, 490-494.
    連結:
  43. 44.F. D. Giacomo, S. Razza, F. Matteocci, A. D’Epifanio, S. Licoccia, T. M. Brown and A. D. Carlo, “High efficiency CH3NH3PbI(3-x)Clx perovskite solar cells with poly(3-hexylthiophene) hole transport layer.” J. Power Sources, 2014, 251, 152-156.
    連結:
  44. 45.P. Qin, A. L. Domanski, A. K. Chandiran, R. Berger, H. J. Butt, M. I. Dar, T. Moehl, N. Tetreault, P. Gao, S. Ahmad, M. K. Nazeeruddin and M. Grätzel, “Yttrium-substituted nanocrystalline TiO2 photoanodes for perovskite based heterojunction solar cells.” Nanoscale, 2014, 6, 1508-1514.
    連結:
  45. 46.J. A. Christians, R. C. M. Fung and P. V. Kamat, “An Inorganic Hole Conductor for Organo-Lead Halide Perovskite Solar Cells. Improved Hole Conductivity with Copper Iodide.” J. Am. Chem. Soc., 2014, 136, 758-764.
    連結:
  46. 47.M. J. Carnie, C. Charbonneau, M. L. Davies, J. Troughton, T. M. Watson, K. Wojciechowski, H. Snaith and D. A. Worsley, “A one-step low temperature processing route for organolead halide perovskite solar cells.” Chem. Commun., 2013, 49, 7893-7895.
    連結:
  47. 48.Z. Ku, Y. Rong, M. Xu, T. Liu and H. Han, “Full Printable Processed Mesoscopic CH3NH3PbI3/TiO2 Heterojunction Solar Cells with Carbon Counter Electrode.” Scientific Reports, 2013, 3, 3132.
    連結:
  48. 49.Y. Rong, Z. Ku, A. Mei, T. Liu, M. Xu, S. Ko, X. Li and H. Han, “Hole-Conductor-Free Mesoscopic TiO2/CH3NH3PbI3 Heterojunction Solar Cells Based on Anatase Nanosheets and Carbon Counter Electrodes.” J. Phys. Chem. Lett., 2014, 5, 2160-2164.
    連結:
  49. 50.G. E. Eperon, V. M. Burlakov, A. Goriely and H. J. Snaith, “Neutral Color Semitransparent Microstructured Perovskite Solar Cells.” ACS Nano, 2014, 8, 591-598.
    連結:
  50. 51.B. Suarez, V. Gonzalez-Pedro, T. S. Ripolles, R. S. Sanchez, L. Otero and I. Mora-Sero, “Recombination Study of Combined Halides (Cl, Br, I) Perovskite Solar Cells.” J. Phys. Chem. Lett., 2014, 5, 1628-1635.
    連結:
  51. 52.H. Zhang, Y. Shi, F. Yan, L. Wang, K. Wang, Y. Xing, Q. Donga and D. Ma, “A dual functional additive for the HTM layer in perovskite solar cells.” Chem. Commun., 2014, 50, 5020-5022.
    連結:
  52. 53.Y. Ogomi, A. Morita, S. Tsukamoto, T. Saitho, N. Fujikawa, Q. Shen, T. Toyoda, K. Yoshino, S. S. Pandey, T. Ma and S. Hayase, “CH3NH3SnxPb(1−x)I3 Perovskite Solar Cells Covering up to 1060 nm.” J. Phys. Chem. Lett., 2014, 5, 1004-1011.
    連結:
  53. 54.T. Leijtens, B. Lauber, G. E. Eperon, S. D. Stranks and H. J. Snaith, “The Importance of Perovskite Pore Filling in Organometal Mixed Halide Sensitized TiO2‑Based Solar Cells.” J. Phys. Chem. Lett., 2014, 5, 1096-1102.
    連結:
  54. 55.J. T. W. Wang, J. M. Ball, E. M. Barea, A. Abate, J. A. Alexander-Webber, J. Huang, M. Saliba, I. Mora-Sero, J. Bisquert, H. J. Snaith and R. J. Nicholas, “Low-Temperature Processed Electron Collection Layers of Graphene/TiO2 Nanocomposites in Thin Film Perovskite Solar Cells.” Nano Lett., 2014, 14, 724-730.
    連結:
  55. 56. A. Yella, L. P. Heiniger, P. Gao, M. K. Nazeeruddin and M. Grätzel, “Nanocrystalline Rutile Electron Extraction Layer Enables Low-Temperature Solution Processed Perovskite Photovoltaics with 13.7% Efficiency.” Nano Lett., 2014, 14, 2591-2596.
    連結:
  56. 57.G. Niu, W. Li, F. Meng, L. Wang, H. Dong and Y. Qiu, “Study on the stability of CH3NH3PbI3 films and the effect of post-modification by aluminum oxide in all-solid-state hybrid solar cells.” J. Mater. Chem. A, 2014, 2, 705-710.
    連結:
  57. 58.V. Gonzalez-Pedro, E. J. Juarez-Perez, W. S. Arsyad, E. M. Barea, F. Fabregat-Santiago, I. Mora-Sero and J. Bisquert, “General Working Principles of CH3NH3PbX3 Perovskite Solar Cells.” Nano Lett., 2014, 14, 888-893.
    連結:
  58. 59.G. E. Eperon, V. M. Burlakov, P. Docampo, A. Goriely and H. J. Snaith, “Morphological Control for High Performance, Solution-Processed Planar Heterojunction Perovskite Solar Cells.” Adv. Funct. Mater., 2014, 24, 151-157.
    連結:
  59. 60.W. Zhang, M. Saliba, S. D. Stranks, Y. Sun, X. Shi, U. Wiesner and H. J. Snaith, “Enhancement of Perovskite-Based Solar Cells Employing Core−Shell Metal Nanoparticles.” Nano Lett., 2013, 13, 4505-4510.
    連結:
  60. 61.A. K. Chandiran, M. Abdi-Jalebi, A. Yella, M. I. Dar, C. Yi, S. A. Shivashankar, M. K. Nazeeruddin and M. Grätzel, “Quantum-Confined ZnO Nanoshell Photoanodes for Mesoscopic Solar Cells.” Nano Lett., 2014, 14, 1190-1195.
    連結:
  61. 62.D. Y. Son, J. H. Im, H. S. Kim and N. G. Park, “11% Efficient Perovskite Solar Cell Based on ZnO Nanorods: An Effective Charge Collection System.” J. Phys. Chem. C, 2014. Article ASAP.
    連結:
  62. 63.F. Matteocci, S. Razza, F. D. Giacomo, S. Casaluci, G. Mincuzzi, T. M. Brown, A. D’Epifanio, S. Licocciab and A. D. Carlo, “Solid-state solar modules based on mesoscopic organometal halide perovskite: a route towards the up-scaling process.” Phys. Chem. Chem. Phys., 2014, 16, 3918-3923.
    連結:
  63. 64.G. E. Eperon, S. D. Stranks, C. Menelaou, M. B. Johnston, L. M. Herz and H. J. Snaith, “Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells.” Energy Environ. Sci., 2014, 7, 982-988.
    連結:
  64. 65.J. Shi, Y. Luo, H. Wei, J. Luo, J. Dong, S. Lv, J. Xiao, Y. Xu, L. Zhu, X. Xu, H. Wu, D. Li and Q. Meng, “Modified Two-Step Deposition Method for High-Efficiency TiO2/CH3NH3PbI3 Heterojunction Solar Cells.” ACS Appl. Mater. Interfaces, 2014, 6, 9711-9718.
    連結:
  65. 66. N. J. Jeon, J. Lee, J. H. Noh, M. K. Nazeeruddin, M. Grätzel and S. I. Seok, “Efficient Inorganic−Organic Hybrid Perovskite Solar Cells Based on Pyrene Arylamine Derivatives as Hole-Transporting Materials.” J. Am. Chem. Soc., 2013, 135, 19087-19090.
    連結:
  66. 67.D. Bi, L. Yang, G. Boschloo, A. Hagfeldt and E. M. J. Johansson, “Effect of Different Hole Transport Materials on Recombination in CH3NH3PbI3 Perovskite-Sensitized Mesoscopic Solar Cells.” J. Phys. Chem. Lett., 2013, 4, 1532-1536.
    連結:
  67. 68.T. Miyasaka, “Toward Printable Sensitized Mesoscopic Solar Cells: Light-Harvesting Management with Thin TiO2 Films.” J. Phys. Chem. Lett., 2011, 2, 262-269.
    連結:
  68. 69.N. J. Jeon, H. G. Lee, Y. C. Kim, J. Seo, J. H. Noh, J. Lee and S. I. Seok, “o-Methoxy Substituents in Spiro-OMeTAD for Efficient Inorganic−Organic Hybrid Perovskite Solar Cells.” J. Am. Chem. Soc., 2014, 136, 7837-7840.
    連結:
  69. 70.S. Aharon, B. E. Cohen and L. Etgar, “Hybrid Lead Halide Iodide and Lead Halide Bromide in Efficient Hole Conductor Free Perovskite Solar Cell.” J. Phys. Chem. C, 2014. Article ASAP.
    連結:
  70. 71.Y. Zhao and K. Zhu, “CH3NH3Cl-Assisted One-Step Solution Growth of CH3NH3PbI3:Structure, Charge-Carrier Dynamics, and Photovoltaic Properties of Perovskite Solar Cells.” J. Phys. Chem. C, 2014, 118, 9412-9418.
    連結:
  71. 72.H. Zhou, Q. Chen, G. Li, S. Luo, T. Song, H. Duan, Z. Hong, J. You, Y. Liu, Y. Yang, “Interface engineering of highly efficient perovskite solar cells.” Science, 2014, 345, 542-546.
    連結:
  72. 1.C. Fritts, “On a New Form of Selenium Photocell.” American J. of Science, 1883, 26, 465.