Translated Titles

The study of mobile application development influenced by the combination of context-aware location-based services and social network recommendation systems





Key Words

協同過濾 ; 行動應用 ; 社群網路 ; 適地性服務 ; 社會網路分析 ; Social Network Analysis ; Collaborative Filtering ; Location-Based Service ; Social Network ; Mobile Application



Volume or Term/Year and Month of Publication


Academic Degree Category




Content Language


Chinese Abstract


English Abstract

In recent years, mobile commerce application development positive. It makes users who use mobile-device become very convenience. Mobile application also become diversification, Location-Based Service and Mobile Recommendation are on behalf of mobile application service. Now, mobile application mix in social network. Through push and share in social network, it let the development of mobile application will a step forward. However, mobile recommendation`s mode has not basis by the combination of context-aware location-based services and social network. Therefore, this study proposes the concept of combination of context-aware location-based services and social network recommendation systems. Use Social Network Analysis and Collaborative Filtering to designed recommendation systems. Then this study look for some users, they must operating this system and write web questionnaire in order to verification accuracy of recommend result and accepted and satisfaction by users. Final result proves accuracy of recommend result of the combination of context-aware location-based services and social network is better than general recommend result. It is a good reference value on mobile applications service.

Topic Category 商學院 > 資訊管理研究所
社會科學 > 管理學
  1. Adomavicius, G., & Tuzhi1in, A. (2005). Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. IEEE Transactions on Knowledge and Data Engineering, 17(6), 734-749.
  2. Barnes, S. J. (2002). The mobile commerce value chain: Analysis and future developments. International Journal of Information Management, 22(2), 91-108.
  3. Bernard, H. R. & Freeman L. C. (2005). The Development of Social Network Analysis: A Study in the Sociology of Science. Social Networks, 27(4), 377-384.
  4. Bose, I., & Chen, X. (2009). A framework for context sensitive services: A knowledge discovery based approach. Decision Support Systems, 48(1), 158-168.
  5. Boyd, D. M., & Ellison, N. B. (2007). Social network sites: Definition, history, and scholarship. Journal of Computer-Mediated Communication, 13(1), 210-230.
  6. Carpenter, G. A., & Grossberg, S. (1987). ART2: Self-organization of Stable Category Recognition Codes for Analog Input Patterns. Applied Optics, 4919-4930.
  7. Davis, F. D., & Venkatesh, V. (1996). A critical assessment of potential measurement biases in the technology acceptance model: three experiments. International Journal of Human-Computer Studies, 45(1), 19-45.
  8. Dey, A. K. (2001). Understanding and Using Context. Personal Ubiquitous Comput, 5(1), 4-7. doi:10.1007/s007790170019
  9. Freeman, L. C. (2004). The Development of Social Network Analysis: A Study in the Sociology of Science. Vancouver, Canada: EmpiricalPress.
  10. Hsing, M, K., Liang, C, C., & Chien, W, L. (2009). Building and evaluating a location-based service recommendation system with a preference adjustment mechanism. Expert Systems with Applications 36(3), 3543-3554. doi:10.1016/j.eswa.2008.02.014
  11. Jayawardhena, C., Kucketrz, A., Karjaluoto, H., & Kautonen, T. (2009). Antecedents to permission based mobile marketing: an initial examination. European Journal of Marketing, 43(3), 473-499.
  12. Jung, K. Y., & Lee, J. H. (2004).User preference mining through hybrid collaborative filtering and content-based filtering in recommendation system. IEICE Trans InfSyst (Inst Electron InfCommunEng), E87-D(12), 2781-2790.
  13. Liccardi, L., Ounnas, A., Pau, R., Massey, E., Kinnunen, P., & Lewthwaite, S. (2007). The role of social networks in students' learning experiences. SIGCSE Bull, 39(4), 224-237.
  14. Li, Y., Lu, L., & Xuefeng, L. (2005).A hybrid collaborative filtering method for multiple-interests and multiple-content recommendation in E-Commerce. Expert Systems with Applications, 28(1), 67-77.
  15. Massa, P., & Bhattacharjee, B. (2004). Using trust in recommender systems: an experimental analysis. Trust Management, 221-235.
  16. Puntheeranurak, S., & Tsuji, H. (2007, October).A Multi-clustering Hybrid Recommender System. Seventh International Conference on Computer and Information Technology. Symposium conducted at the meeting of IEEE Computer Society (pp. 223-228), Fukushima, Japan.
  17. Pura, M. (2005). Linking perceived value and loyalty in location-based mobile services. Managing Service Quality 15(6), 509-538.
  18. Resnick, P. (1997). Recommender systems. Communications of the ACM, 40(3), 56-58.
  19. Ricci, F. (2002). Travel recommender systems. IEEE Intelligent Systems, 17(6), 55-57.
  20. Shardanand, U., & Maes, P. (1995). Social information filtering: algorithms for automating "word of mouth". Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, ACM Press/Addison-Wesley Publishing Co., Denver, Colorado, USA, 210-217. doi:10.1145/223904.223931
  21. Stephen, A., & Toubia, O. (2008). Deriving value from social commerce networks. Journal of Marketing Research, 4, 1-61.
  22. Tilson, D., Lyytinen, K. & Baxter, R. (2004). A Framework for selecting a Location Based Service (LBS) Strategy and Service Portfolio. Proceedings of the 37th Annual Hawaii International Conference on System Sciences, 1-10.
  23. Watts, D., & Strogatz, S. (1998). Collective dynamics of 'small-world' networks. Nature, 393, 440-442.
  24. 朱文禎、陳哲賢(民96)。探討虛擬社群之知識分享行為:以線上遊戲社群為例。電子商務研究,5(1),55-80。
  25. 吳肇銘,(民97)。以消費者購買決策階段為基礎之適性化推薦系統設計與績效之研究。資訊管理展望,10(2),19-43。
  26. 洪朝陽(民94)。消費者使用WAP頻率對消費者知覺行動商務購物風險及購買意願影響研究。運動休閒管理學報,2(1),133-144。
  27. 郭英峰、陳邦誠(民96)。企業導入行動商務之實施策略、應用及經營績效之關係。資訊管理學報,14(4),185-210。
  28. 陳炳彰、王士偉(民99年3月)。行動商務之便利付款機制。第五屆數位教學暨資訊實務研討會發表之論文,417-424。南台科技大學。
  29. 黃夙賢、林炳憲(民99)。部落格好友關係之社會網路分析–以無名小站創作圖像分類為例。電子商務研究(Electronic Commerce Studies),8(2),209-230。
  30. 黃國峯、林谷合(民98)。LBS定位之商圈/展場創新服務研究計畫。財團法人資訊工業策進會委託之研究期末報告(計畫編號:98-5028),未出版。
  31. 參考文獻
  32. Abowd, G. D., Dey, A. K., Brown, P. J., Davies, N., Smith, M., & Steggles, P. (1999). Towards a Better Understanding of Context and Context-Awareness. Proceedings of the 1st international symposium on Handheld and Ubiquitous Computing, Springer-Verlag, Karlsruhe, Germany, 304-307.
  33. Bi11sus, D., & Pazzani, M. J. (1998, July).Learning collaborative information filters. Proceedings of the 15th International Conference on Machine Learning. Symposium conducted at the meeting of University of Wisconsin, Madison, Wisconsin, USA.
  34. Carolis, B. D., Mazzotta, I., Novielli, N., & Silvestri, V. (2009). Using Common Sense in Providing Personalized Recommendations in the Tourism Domain. Proceedings of the Workshop on Context-Aware Recommender Systems (CARS-2009), 3rd ACM Conference on Recommender Systems New York.
  35. Chen, G., & Kotz, D. (2000). A Survey of Context-Aware Mobile Computing Research (Dartmouth Computer Science Technical Report TR2000-381). Retrieved from Dartmouth College Hanover, NH, USA.
  36. Lyytinen, K. (2001, January). Mobile commerce: A new frontier for E-business. The 34th Annual Hawaii International Conference on System Sciences. Symposium conducted at the meeting of the IEEE Computer Society, Maui, Hawaii, USA.
  37. Melville, P., Mooney, R. J., & Nagarajan, R. (2002).Content-boosted collaborative filtering for improved recommendations. Proceedings of the Eighteenth National Conference on Artificial Intelligence. Symposium conducted at the meeting of National Conference on Artificial Intelligence (AAAI), Edmonton, Canada.
  38. O'Donovan, J., & Smyth, B. (2005, January).Trust in recommender systems. Proceedings of the 10th International Conference on Intelligent User Interfaces. San Diego, CA, USA.
  39. Rashid, A. M., Albert, I., Cosley, D., Lam, S. K., McNee, S. M., Konstan, J. A., & Riedl, J. (2002, January). Getting to know you: Learning new user preferences in recommender systems. Proceedings of the 7th International Conference on Intelligent User Interfaces. Symposium conducted at the meeting of Association for Computing Machinery (ACM) (pp. 127-134), New York, NY, USA.
  40. Sarwar, B., Karypis, G., Konstan, J., & Riedl, J. (2001, May). Item-based collaborative filtering recommendation algorithms. Proceedings of the 10th international conference on World Wide Web. Symposium conducted at the meeting of Association for Computing Machinery (ACM), Hong Kong, 285-295.
  41. 呂元鐘(民101年2月)。【電子商務實戰講堂之六】社群商務,把粉絲變成滾滾黃金的月亮土司。數位時代網站。取自http://www.bnext.com.tw/article/vie
  42. w/cid/0/id/22107
  43. 沈柏翰(民99)。LBS與未來行動學習。數位典藏與學習電子報,9(9)。取自http://newsletter.teldap.tw/news/ProgramTourismContent.php?nid=3976&lid=447
  44. 李晏寧(民98年8月)。展現創新應用巧思,LBS打造雙向互動新體驗。新電子科技雜誌,取自http://www.mem.com.tw/article_content.asp?sn=0908270013
  45. 周駿呈(民96)。行動定位服務應用發展趨勢分析。CIA通訊產業結盟電子報,取自http://www.teema.org.tw/ciaweb/magazine.asp
  46. 翁頌舜、陳文典(民95)。整合情境資訊之多維度推薦環境。2006電子商務與數位生活研討會論文集。
  47. 黃競樺(民97)。適地性行動網路社群服務 2013年市場規模將達33億美元。資策會FIND網站。取自http://www.find.org.tw/find/home.aspx?page=news&id=5258
  48. 楊欣霖(民100年2月)。2012年十大消費應用趨勢預測。數位時代網站。取自http://www.bnext.com.tw/article/view/tag/%E9%81%A9%E5%9C%B0%E6%80%A7%E6%9C%8D%E5%8B%99/id/17380
  49. 楊舜仁(民90)。行動商務的發展趨勢與個人應用。電子化企業經理人報告,26,83-88。
  50. 鄭仁富、高佑嘉、林玉凡(民97年5月)。消費者對位基服務 (LBS) 接受度之研究。2008南台灣資訊科技與應用研討會發表之論文,屏東縣美和科技大學。
  51. 鍾榮峰(民97年10月21日)。Intel強化MID整合LBS平台架構與產業縱深【新聞群組】,取自http://www.ctimes.com.tw/News/ShowNews.asp?O=HJSALBEPRAZSA-0CNP