Translated Titles

Using Decision Tree Method to Explore Applicability of Radio Frequency Identification in Nuclear Environments



Key Words

核能環境 ; 決策樹 ; CHAID ; 資料探勘 ; 無線射頻辨識 ; RFID ; Decision tree ; Nuclear power plant ; Data mining ; CHAID



Volume or Term/Year and Month of Publication


Academic Degree Category




Content Language


Chinese Abstract

我國目前有三座核電廠包括核一廠、核二廠與核三廠以及一座正在興建中的龍門電廠(每座電廠均有兩部機組),提供總發電容量約為514萬瓩,約佔全國電力總裝機容量的13% (Taiwan Power Company, 2011)。2011年日本福島核災後,我國政府宣佈調整核電政策,三座運轉中的核能電廠將於40年的運轉壽命到期後如期除役。然而,核能電廠除役計畫中,拆除後的廢棄物(含輻射、非輻射、金屬、水泥塊與廢土等)追蹤管理為首要規劃工作項目之一。 隨著科技的興起,無線射頻辨識 (Radio Frequency Identification, 以下簡稱RFID) 技術之特性非常適合用於庫存管理與貨品生命週期的追蹤上,至今已應用於交通運輸、門禁管理、倉儲管理及物流運輸等相關領域扮演重要的角色,且可減少人力成本與提升工作效率,但目前國內尚未有RFID應用於核能電廠案例,因RFID技術具有遠距離資料讀取及儲存的特性,若能使用於核能輻射環境,將可減少工作人員接觸輻射機會,以及增加核電廠廢棄物管理效能。然而,市面上尚未有RFID相關設備曾在核能電廠輻射環境長期使用。 本研究主要目的為探討各種RFID標籤與設備於核能環境適用性分析。首先研究主要影響因子,並依據實際RFID於核能環境測試數據進行分析,再運用資料探勘中的決策樹CHAID (Chi-Square Automatic Interaction Detection)及CART (Classification and Regression Tree) 演算法進行分類比較,以找出較適合的RFID標籤與設備。本研究分析結果為市面上所購得六種RFID標籤與設備中,被動式長距離抗金屬標籤與固定式讀取設備較適合應用於核能環境中。本研究結果將可作為未來我國核能電廠除役計畫中,採用RFID技術管理暨追蹤拆除後廢棄物之參考。

English Abstract

In Taiwan, there are three operating Nuclear Power Plants (NPPs) located at Chinshan, Kuosheng and Maanshan, with two operating units at each site, provide a total installed capacity of 5,144 MWe, accounting for 13% of the total installed electricity capacity in 2011. After the accident at Japan’s Fukushima Daiichi NPP, Taiwanese government adjusted its nuclear power policy. The three operating NPPs will be decommissioned on schedule, and the life of these NPPs will not be extended. Therefore, the preparation of decommissioning projects of these NPPs becomes an important issue for the nuclear community. Especially, safe, efficient, reliable and sustainable solutions to manage radioactive wastes of decommissioning project. Radio Frequency Identification (RFID) is a one potential solution. Radio Frequency Identification (RFID) is an emerging technology that is being used in supply chain management gradually. RFID technology plays an important role in supporting logistics and supply chain processes because of their ability to identify, trace and track information throughout the supply chain. The technology can provide suppliers, manufacturers, distributors and retailers precise real-time information about the products. The accurate knowledge of inventory would result in lower labor cost, simplified business processes and improved supply chain efficiency. However, the RFID technology applies to the nuclear radioactive environment is rare. The major purpose of this thesis is to explore and analyze applicability of various RFID tags and equipments in nuclear radioactive environment. Firstly, the study identified the main impact factors and analyzed RFID data in nuclear radioactive environment. Next, the Chi-Square Automatic Interaction Detection (CHAID) and Classification and Regression Tree (CART) algorithms are employed to classify the applicability of RFID tags and equipments. Six types of RFID tags and equipments are analyzed, and the results indicated that the passive long resistance to metal tag and fixed type reader are suitable for applying for the application of nuclear radioactive environment. It is anticipated that the results of this study will be an important knowledge repository and design base for adopting RFID technology within decommissioning projects of NPPs in Taiwan.

Topic Category 電機資訊學院 > 工業與系統工程研究所
工程學 > 工程學總論
  1. Condeaa, C. Thiessec, F., and Fleischa, E., (2012), “RFID-enabled shelf replenishment with backroom monitoring in retail stores”, Vol. 52, Issue 4, pp. 839-849.
  2. Dzeroski, S., (2007), “Towards a general framework for data mining,” Lecture Notes in Computer Science, Vol. 4747, pp. 259-300.
  3. Fayyad, U., and Stolorz, P., (1997), “Data mining and KDD: Promise and challenges”, Further Generation Computer System, Vol.13, pp. 99-115.
  4. Ha, S. H., and Park, S. C., (1998), “Application of data mining tools to hotel data mart on the Intranet for database marketing”, Expert Systems with Applications, Vol. 15 Issue 1, pp. 1-31.
  5. Hannan, M.A., Arebey, M., Begum, R.A. and Basri, H., (2011), “Radio Frequency Identification (RFID) and communication technologies for solid waste bin and truck monitoring system”, Waste Management, vol.31, pp.2406-2413.
  6. Hartigan, J. A., (1975), “Clustering Algorithms Probability & Mathematical Statistics”, John Wiley & Sons Inc.
  7. Hsu, C.-I., Shih, H.-H., and Wang, W.-C., (2009), “Applying RFID to reduce delay in import cargo customs clearance process”, Vol. 57, Issue 2, pp. 506-519.
  8. IEA, Energy Balances of OECD Countries, (2012); Energy Balances of NON-OECD Countries, (2012), Global Energy Network Institute.
  9. Lee, E.-K., Oh, S. Y., and Gerla, M., (2012),“RFID assisted vehicle positioning in VANETS”, Vol. 8, Issue 8, pp. 167-179.
  10. Linoff, G. (1998), “Which way to the mine AS/400 Systems Management”, Arlington Heights : Jan. Vol. 26, Issue 1, pp. 42.
  11. Mehta, K., and Bhattacharyya, S., (2004),“Adequacy of training data for evolutionary mining of trading rules”, Decision Support Systems, 37, pp.461-474.
  12. Morgan, J. A., and Sonquist, J. N., (1963),“Problems in the analysis of survey data and a proposal, Journal of the American Statistical Association”, Vol. 58, pp. 415-434.
  13. Qu, X., Simpson, L.-T., and Stanfield, P., (2011), “ A model for quantifying the value of RFID-enabled equipment tracking in hospitals,” Vol. 25, Issue 1, pp. 23-31.
  14. Quinlan, J. R., (1986), “Induction of decision tree,” Machine Learning, pp. 81-106.
  15. Ruiz-Garcia, L., and Lunadei, L., (2011), “The role of RFID in agriculture: Applications, limitations and challenges”, Vol. 79, Issue 1, pp. 42-50.
  16. Sharma S., Osei-Bryson K.-M., and Kasper G. M. (2012), “Evaluation of an integrated Knowledge Discovery and Data Mining process model”, Vol. 39 Issue 13, pp. 11335-11348.
  17. Sut, N., and Simsek, O., (2011), “Comparison of regression tree data mining methods for prediction of mortality in head injury”, Expert Systems with Applications Vol. 38, pp.15534-15539.
  18. Ture, M., Kurt, I., Kurum, T. A., and Ozdamar, K., (2005), “Comparing classification techniques for predicting essential hypertension”, Expert Systems with Application, Vol. 29 Issue 3, pp. 583-588.
  19. Weisheng Lu, George Q. Huang, and Heng Li, (2011), “Scenarios for applying RFID technology in construction project management”, Vol. 20, Issue 2, pp. 101-106.
  20. Zadeh, L. A., (1965), “Fuzzy sets and systems”, Information and Control, Vol. 8, pp.338-353.
  21. Zhang, D., and Jiang, K., (2012), “Application of Data Mining Techniques in the Analysis of Fire Incidents”, Procedia Engineering, Vol. 43, pp. 250-256.
  22. 【5】周雅君(2007),“以資料探勘為基建構偏光板品質異常診斷系統”,元智大學工業與管理學系碩士論文。
  23. 【10】鄭炳坤(2005),“RFID於物流中心應用之探討”,中原大學工業工程研究所碩士論文。
  24. 參考文獻
  25. 英文部分
  26. ABI Research 2007 Q1 Report, available at: http://www.abiresearch.com/home.jsp (accessed 12 October 2010), 2010.
  27. Berry, M., and Linoff, G., (1997), “Data Mining Techniques for Marketing,” Sales and Customer Support, John Wiley and Sons, New York.
  28. Breiman, L., Friedman, J. H., Olshen, R. J., and Stone, C. J., (1984), “Classification and Regression Trees”, Belmont, CA:Wadsworth.
  29. Curt, H., (1995), “The Deville’s in the Detail: Techniques”, Tool, and Applications for Data mining and Knowledge Discovery-Part 1 .Intelligent Software Strategies, Vol.6 Issue 9, pp.3.
  30. Hall, C., (1995), “The devil's in the details: techniques, tools, and application for database mining and knowledge discovery part II”, Intelligent Software Strategies, Vol.6 Issue 9, pp. 1-16.
  31. Han, J., and Kamber, M., (2000), “Data Mining: Concepts and Techniques”, San Francisco, CA, USA : Morgan Kaufmann.
  32. Horng, S. C., (2011), “Introduction to RFID,” available at: lms.ctl.cyut.edu.tw/sys/read_attach.php?id=902776
  33. Keating, B., (2008), “Data mining: What Is It and How Is It used?” Journal of Business Forecasting, Vol.27 Issue 3, pp.33-35.
  34. Krivda, Chery D., (1996), “Unearthing underground data,” LAN, May, pp. 42-48.
  35. Peacock, P. R., (1998), “Data Mining in Marketing: Part 1,” Marketing Management, and Vol.6 Issue 4. pp. 8-18.
  36. Pyle, D., (1999), “Data preparation for data mining,” Morgan Kaufmann Publishers, Inc. San Francisco, USA.
  37. Quinlan, J. R., (1993), “C4.5: Programs for Machine Learning, Morgan Kaufmann”, San Mateo, California.
  38. Quinlan, J. R., (1996), “Bagging, boosting, and c4.5 in Proceedings of the Thirteenth National Conference on Articial Intelligence”, AAAI Press and the MIT Press, pp. 725-730.
  39. Taiwan Power Company, (2011),“Taiwan Power Company sustainability report”, http://www. taipower.com.tw/ TaipowerWeb//upload/files/35/2012CSR-all.pdf.
  40. 中文部分
  41. 【1】台灣電力公司(2012),核能營運現況,網址:http://www.taipower.com.tw/content/new_info/new_info-b23.aspx?LinkID=7
  42. 【2】廖述賢、溫志皓(2012),資料探勘理論與應用 : 以IBM SPSS Modeler為範例,初版,新北市:博碩文化。
  43. 【3】洪佳瑜(2011),“應用決策樹探討如何招募有效捐贈者”,國立東華大學資訊工程學系碩士論文。
  44. 【4】謝邦昌(2005),資料探勘與商業智慧 - SQL Server 2005,初版,台北:鼎茂圖書。
  45. 【6】陳新霖(2009),“結合RFID與資料採礦技術發展圖書推薦系統”,國立勤益科技大學工業與管理學系碩士論文。
  46. 【7】曾憲雄、蔡秀滿、蘇東興、曾秋蓉、王慶堯(2005),資料探勘,初版,台北市:旗標出版。
  47. 【8】吳懷珍(2006),“應用資料探勘於國軍通用零附件申補作業之研究─以憑單撤銷為例”,國防管理學院國防資訊研究所碩士論文。
  48. 【9】賴秋香(2007),RFID市場發展現況,資策會創新應用服務研究所,網址:http://f2331.just.edu.tw/rfid/rfid%E5%B8%82%E5%A0%B4%E7%99%BC%E5%B1%95%E7%8F%BE%E6%B3%81.pdf
  49. 【11】陳嘉祥(2004),“RFID在CVS物流中心應用”,國立高雄第一科技大學運輸倉儲營運所碩士論文。
  50. 【12】尹相志(2008),SQLServer2008 Data Mining資料採礦,初版,新北市:悅知文化。