Title

利用模糊理論和層級分析法解排班問題

Translated Titles

Applying Fuzzy and AHP toSolve Nurse Scheduling Problems

Authors

林英傑

Key Words

層級分析法 ; 模糊理論 ; 整數規劃 ; 多目標規劃、護理排班 ; Integer programming ; Multi-objective programming ; Nurse scheduling ; Fuzzy theory ; Analytic hierarchy process (AHP)

PublicationName

中原大學工業與系統工程研究所學位論文

Volume or Term/Year and Month of Publication

2013年

Academic Degree Category

碩士

Advisor

陳平舜

Content Language

繁體中文

Chinese Abstract

醫事放射師的排班問題為一多目標規劃問題。本研究的研究目的是為了求得適當的醫事放射師人數,並在滿足政府法規、醫院規定和護理人員偏好等限制下產生班表。醫事放射師的排班是採用一個星期七天,每天三班,每班8小時的輪班制。本研究不僅有相關規定之硬限制(舉例:政府法規),也加入軟限制(舉例:護理人員偏好),讓這個複雜的排班問題可以更加靈活且實用。 本研究的研究方法是利用模糊理論,求出班表適合的醫事放射師人數;其次,建立醫事放射師的多目標排班問題;最後,採用層級分析法,計算多目標權重,並利用ILOG軟體求出最佳解。目標式為0時,表示有不違反軟限制之解;目標式大於0時,則表示有至少違反一個軟性限制之解。此外,本研究在醫事放射師的人數進行敏感度分析,結果證明醫院能夠確定可行的醫事放射師人數,並取得班表。本研究最後進行情境分析,探討加入休假限制對醫事放射師班表的影響,結果發現增加休假限制可以產生一個更公平的醫事放射師班表。

English Abstract

The radiologist scheduling problem is a multi-objective and complicated problem. The purpose of this research is to obtain an appropriate number of radiologists, and assign their monthly schedule which satisfies the government regulations, hospital regulations, and the radiologists’ preference. The radiologists of the Emergency Room have eight hour a shift, three shifts a day,and seven days a week. This research considers not only hard constraints (i.e., government regulation), but also soft constraints (i.e., radiologists’ preference). Hence, the formulated radiologist scheduling problem becomes more flexible and practical. The methodology of this research is to use the fuzzy theory to obtain the appropriate radiologists, construct a multi-objective radiologist scheduling problem, and apply the analytic hierarchy process (AHP) to determine the weight of objectives. This study adopts the ILOG software to solve this proposed problem. If the optimal solution is zero, it means that there is no violation against soft constraints. Otherwise, there is at least one violation against soft constraints. Further, this research performs the sensitivity analysis for the number of radiologists. The findings show that hospitals can determine the feasible number of radiologists and obtain their monthly schedule. This study performs the scenario analysis to explore the impact of the vacation constraint on the radiologist schedule. The outcomes show that adding the vacation constraint can generate a fairer radiologist schedule.

Topic Category 電機資訊學院 > 工業與系統工程研究所
工程學 > 工程學總論
Reference
  1. Azaiez, M. N., & Al Sharif, S. S. (2005). A 0-1 goal programming model for nurse scheduling. Computers & Operations Research, 32(3), 491-507.
    連結:
  2. Burke, E. K., Causmaecker, P. D., Berghe, G. V., & Landeghem, H. V. (2004). The state of the art of nurse rostering. Journal of Scheduling, 7, 441-499.
    連結:
  3. Gutjahr, W. J., & Rauner, M. S. (2007). An ACO algorithm for a dynamic regional nurse-scheduling problem in Austria. Computers & Operations Research, 34(3), 642-666.
    連結:
  4. Jenal, R., Wan, R. I., Liong, C. Y., & Ahmed, O. (2011). A cyclical nurse schedule using goal programming. ITB Journal of Science, 43(3), 151-164.
    連結:
  5. Saaty, T. L. (1990). Decision Making For Leaders-the Analytic Hierarchy Process for Decisions in a Complex World. Pittsburgh, PA: RWS Publications.
    連結:
  6. Saaty, T. L. (1994). Fundamentals of Decision Making with the Analytic Hierarchy Process. Pittsburgh, PA: RWS Publications.
    連結:
  7. Seyda, T. (2006). A multi-objective programming model for scheduling emergency medicine residents. Computers & Operations Research, 51, 375-388.
    連結:
  8. Topaloglu, S. (2009). A shift scheduling model for employees with different seniority levels and an application in healthcare. European Journal of Operational Research, 198(3), 943-957.
    連結:
  9. Topaloglu, S., & Ozkarahan, I. (2011). A constraint programming-based solution approach for medical resident scheduling problems. Computers & Operations Research, 38(1), 246-255.
    連結:
  10. Topaloglu, S., & Selim, H. (2010). Nurse scheduling using fuzzy modeling approach. Fuzzy Sets and Systems, 161(11), 1543-1563.
    連結:
  11. Tsai, C.-C., & Li, S. H. A. (2009). A two-stage modeling with genetic algorithms for the nurse scheduling problem. Expert Systems with Applications, 36(5), 9506-9512.
    連結:
  12. 林廷臻,隸屬度函數及區間長度改良對模糊時間序列預測之影響探討,大同大學應用數學研究所碩士論文,2008。
    連結:
  13. 參考文獻
  14. Cheang, B., Li, H., Lim, A., & Rodrigues, B. (2003). Nurse rostering problems-a bibliographic survey. European Journal of Operational Research, 151(3), 447-460.
  15. Güler, M. G., İdiler, M. G., al of Operational Research, 151(2003). Nurse rostering problems-a bibliographic survey. r and reanimation department. Expert Systems with Applications, 40(6), 2117-2126.
Times Cited
  1. 沈優錢(2014)。製造生產人力排班最佳化之研究。中央大學土木工程學系碩士在職專班學位論文。2014。1-83。
  2. 蔡嘉哲(2015)。運用萬用啟發式演算法解醫護人員排班問題。中原大學工業與系統工程研究所學位論文。2015。1-55。