Title

使用模糊本體開發餐廳口碑的推薦系統

Translated Titles

Using Fuzzy Ontology to Develop Restaurant Word Of Mouth Recommender System

DOI

10.6840/cycu201300938

Authors

時立哲

Key Words

專家系統 ; 模糊理論 ; 知識本體 ; 推薦系統 ; 電子口碑 ; Fuzzy theory ; electronic Word-of-mouth(eWOM) ; Recommendation system ; Expert systems ; Ontology

PublicationName

中原大學資訊管理研究所學位論文

Volume or Term/Year and Month of Publication

2013年

Academic Degree Category

碩士

Advisor

戚玉樑

Content Language

繁體中文

Chinese Abstract

中文摘要 知識本體提供知識庫一個完整的分類架構,能將生活中的明確知識模型化存入知識庫裡。但現實生活中存在著許多不明確知識,如感受、認知、主觀意識等;受限於系統在不明確資訊的表達,因此建置本體時須先透過人為判斷,將模糊知識轉換為明確資訊;但經由人為判斷反而與事實知識產生偏差,衍生後續的推薦偏差。另一方面,由於傳統以知識庫為基礎的推薦系統使用明確推論進行推薦,即使多數條件極為符合,只要有某一項目略低於推薦標準便遭系統剃除。 因此本研究嘗試發展一個以不失真為目標,處理不明確知識的「知識系統」,藉由知識觀點、知識關聯、模糊邏輯等學理,應用來解決實務問題之專家系統。本研究將明確的知識本體中加入模糊元素,成為模糊知識本體,使得明確推論中帶有模糊區間,推薦過程更貼近人類推薦過程,給予合適程度的彈性推薦和排序。本研究以餐廳推薦為研究議題,設計以模糊本體為基礎之餐飲推薦系統。

English Abstract

Abstract Ontology provides an analysis structure to knowledge field, and will use specific methodology, to keep knowledge into a repository. However, lot of uncertainties fulfill in daily lives, such as emotions, recognition, subjective consciousness, and etc. Due to the uncertain expression of information in limited systems, building Ontology must be through human judgment. It will alter vague knowledge into accurate pieces of information; through human judgment, there are different between the scientific facts and the predispositional opinions of people. Because of these differences, there will be a turning deviation in future of ontology. On the other hand, a recommendation system based on traditional knowledge units will make utilize of the accurate conclusions to proceed recommend. Even though the most conditions match, the recommend standard will be left behind because of the inability to meet the recommended requirements. Thus, this study aims to develop a system that utilized new technology to process uncertain information. Scientific viewpoints, connection, and the blurred theories have been utilized to practical problems for professional systems. This research has added the element of blurriness to the definite aspects of ontology. Results of our research show an unclear view on ontology, causing gaps of ambiguity to fall through the inferences of knowledge. The recommendation from the program is much closer than the ones from human, which offers an ideal result along with proper order. Our main research circles around the rightful direction for restaurants and anything among their field of work; the design of this program utilizes Fuzzy Ontology as a base for a capable approval to this field.

Topic Category 商學院 > 資訊管理研究所
社會科學 > 管理學
Reference
  1. Brin, S., & Page, L. (1998). The anatomy of a large-scale hypertextual Web search engine. Computer networks and ISDN systems, 30(1), 107-117.
    連結:
  2. Brown, J.J., & Reingen, P.H. (1987). Social ties and word-of-mouth referral behavior. Journal of Consumer Research, 14(3), 350-362.
    連結:
  3. Burke, R. (2002). Hybrid Recommender Systems: Survey and Experiments. User Modeling and User-Adapted Interaction, 12(1), 331-370.
    連結:
  4. Chi, Y.L. (2009). A consumer-centric design approach to develop comprehensive knowledge-based systems for keyword discovery. Expert Systems with Applications, 36(2), 2481-2493.
    連結:
  5. Formica, A. (2006). Ontology-based concept similarity in formal concept analysis. Information Sciences, 176(18), 2624-2641.
    連結:
  6. Gelb, B.D., & Sundaram, S. (2002). Adapting to “word of mouse”. Business Horizons, 45(4), 21-25.
    連結:
  7. Gruber, T.R. (1993). A translation approach to portable ontology specifications. Knowledge Acquisition, 5(2), 199-220.
    連結:
  8. Herr, Paul M, Kardes, Frank R, & Kim, John. (1991). Effects of word-of-mouth and product-attribute information on persuasion: An accessibility-diagnosticity perspective. Journal of Consumer Research, 17(4), 454-462.
    連結:
  9. Shardanand, Upendra, & Maes, Pattie. (1995). Social information filtering: algorithms for automating “word of mouth”. Paper presented at the Proceedings of the SIGCHI conference on Human factors in computing systems.
    連結:
  10. Tijerino, Y., & Mizoguchi, R. (1993). MULTIS II: enabling end-users to design problem-solving engines via two-level task ontologies. Knowledge Acquisition for Knowledge-Based Systems, 340-359.
    連結:
  11. Uschold, M. & Gruninger, M. (1996). Ontologies: Principles, Methods and Applications, Knowledge Sharing and Review, 11(2), 93-136.
    連結:
  12. Wille, R. (1992). Concept lattices and conceptual knowledge systems. Computers & mathematics with applications, 23(6), 493-515.
    連結:
  13. Yang, M.S. (1993). A survey of fuzzy clustering. Mathematical and Computer modelling, 18(11), 1-16.
    連結:
  14. Zadeh, L. A. (1965). Fuzzy sets, Information and Control, 8(3), 338–353.
    連結:
  15. Zadeh, L.A. (1995). Discussion: Probability theory and fuzzy logic are complementary rather than competitive. Technometrics, 37(3), 271-276.
    連結:
  16. 林原宏(2002)。模糊語意量表的語意模糊數建構演算與實證分析。中央研究院調查研究期刊,1(11),31-71。
    連結:
  17. 戚玉樑(2006)。知識擷取與知識表達協同程序於建構本體的概念架構。資訊管理學報,13(2),193-215。
    連結:
  18. 許中川、陳景揆(2001)。探勘中文新聞文件。資訊管理學報,7(2),103-122。
    連結:
  19. 陳德美(2009)。發展語意感知模型於網路口碑推薦。(博士論文)。取自臺灣博碩士論文系統。(系統編號 097CYCU5396046)
    連結:
  20. 經濟部商業司(2006)。經濟部95年度商業發展情勢年報,台北市:中華經濟研究院。
    連結:
  21. 蘇靖淑、洪久賢(2011)。台灣餐廳評鑑制度執行與發展之研究。運動休閒餐旅研究,6(1),45-65。
    連結:
  22. 蘇靖淑、洪久賢(2009)。米其林餐廳指南研究之回顧與近期發展。休閒暨觀光產業研究,4(1),116-128.
    連結:
  23. 參考文獻
  24. 一、英文
  25. Bagnoli, C., & Smith, H.C. (1998). The theory of fuzz logic and its application to real estate valuation. Journal of Real Estate Research, 16(2), 169-200.
  26. Bagnoli, Carlo, & Smith, Halbert C. (1998). The theory of fuzz logic and its application to real estate valuation. Journal of Real Estate Research, 16(2), 169-200.
  27. Chandrasekaran, B., Josephson, J.R., & Benjamins, V.R. (1999). What are ontologies, and why do we need them? Intelligent Systems and Their Applications, IEEE, 14(1), 20-26.
  28. Horridge, M., & Patel-Schneider, P.F. (2008). Manchester syntax for OWL 1.1. OWL: Experiences and Directions, Washington, DC.
  29. Noy, N.F., & McGuinness, D.L. (2001). Ontology development 101: A guide to creating your first ontology: Stanford knowledge systems laboratory technical report KSL-01-05 and Stanford medical informatics technical report SMI-2001-0880.
  30. Rashid, A.M., Albert, I., Cosley, D., Lam, S.K., McNee, S.M., Konstan, J.A., & Riedl, J. (2002). Getting to know you: learning new user preferences in recommender systems. Paper presented at the Proceedings of the 7th international conference on Intelligent user interfaces.
  31. Sarwar, Badrul M, Konstan, Joseph A, Borchers, Al, Herlocker, Jon, Miller, Brad, & Riedl, John. (1998). Using filtering agents to improve prediction quality in the GroupLens research collaborative filtering system. Paper presented at the Proceedings of the 1998 ACM conference on Computer supported cooperative work.
  32. Tonella, P. (2004). Formal concept analysis in software engineering. Paper presented at the Software Engineering, 2004. ICSE 2004. Proceedings. 26th International Conference on.
  33. 二、中文
  34. 徐仁全(2007年6月),外食人口大調查。全台330 萬天天外食族逼近北縣總人口。遠見雜誌,252,取自http://www.gvm.com.tw/Boardcontent_13117.html。
  35. 張呈瑋、黃宣龍、林義倫、吳明珊(民2009年9月)。以脈絡洞察法探討網路口碑優化與監控行為。2009科技與管理研討會,國立臺北科技大學科技大樓。
  36. 戚玉樑(2005)。以本體技術為基礎的知識庫建置程序及其應用。資訊、科技與社會學報,5(2),1-18。
  37. 陳振東(2000)。考量決策者樂觀態度傾向的模糊多準則決策方法之研究。管理與系統,7(3),379-394。
  38. 劉天賜(1991)。應用模糊語意於心智性的工作負荷評估(博士論文)。取自http://ir.lib.nthu.edu.tw/handle/987654321/24896。
  39. 三、網頁資料
  40. Zagat Survey “Rated establishments,” 2007(available online at http://www.zagat.com/about/about.aspx?menu=content_policy&LNK=Policy).
  41. 尼爾森。(2009)。影響全球外食族的決定因素:熟悉的食物及合理的價格【新聞群組】。取自http://tw.nielsen.com/site/news20090409.shtml
Times Cited
  1. 陳麗娟(2015)。整合網路口碑之個人化醫療院所推薦系統-以牙醫診所為例。中央大學資訊管理學系學位論文。2015。1-82。