Translated Titles

The Study of Gas Phase Adsorption Equilibrium of Graphene Aerogels for Volatile Organic Compounds





Key Words

石墨烯氣凝膠 ; 氣相吸附 ; 揮發性有機化合物 ; graphene aerogel ; gas adsorption ; volatile organic compounds



Volume or Term/Year and Month of Publication


Academic Degree Category




Content Language


Chinese Abstract

在現今的社會,居住得舒適以及安全都是人們一再追求的目標,然而要注意的不僅是家具擺設、燈光照明、環境便利或是社區治安,更有些看不見的危害可能在影響著我們的健康。   室內的揮發性有機化合物就具備著這樣的特性,高揮發性、高毒性,很容易地就從家具、室內裝潢、建築塗料、清潔劑等逸散至空氣中,輕則頭暈、嘔吐,重則影響神經系統或具有致癌性,甚至即使是使用多年的家具也都還有可能會有揮發性有機化合物的產生,因此如何避免室內揮發性有機化合物對人體的影響也是一個備受關注的議題。   本實驗即選擇吸附的方式去除室內揮發性有機化合物,其優點在於簡單操作、低成本且可以重複使用;本研究也成功自行製備出了比表面積為96.16 m2/g、平均孔徑為3.62 nm、孔體積為0.094 cm3/g的石墨烯氣凝膠,選定由環保署列出的12種室內揮發性有機化合物中的甲苯與四氯化碳作為吸附質,並證明了石墨烯氣凝膠的吸附效果比一般活性碳還更為有效,表示石墨烯氣凝膠有望成為新型的強力吸附材;在回歸分析的部分,所有的等溫吸附曲線也都與Langmuir等溫吸附模型有良好的相關性;在脫附再生的實驗中,更證實了石墨烯氣凝膠不僅有優良的吸附特性,還具有可以循環利用的價值。 關鍵字:石墨烯氣凝膠、氣相吸附、揮發性有機化合物

English Abstract

In today's society, living comfortable and safe are the goals that people have pursued. However, it is not only the furnishings, lighting, environmental convenience or community security, but also some invisible hazards that may affect our health. . Indoor volatile organic compounds(VOCs) have such characteristics, high volatility, high toxicity, and easily emit into the air from furniture, interior decoration, architectural coatings, cleaning agents, etc. Ranging from dizziness and vomiting to severe it affects the nervous system or is carcinogenic. Even furniture that has been used for many years may have VOCs emission. Therefore, how to avoid indoor VOCs from affecting the human body is a topic of concern. This experiment selected the adsorption method to remove indoor VOCs. Its advantages were simple operation, low cost and reusability. This study also successfully prepared a graphene aerogel with specific surface area of 96.16 m2/g, an average pore size of 3.62 nm, and pore volume of 0.094 cm3/g. Toluene and carbon tetrachloride among the 12 indoor volatile organic compounds listed by the EPA were selected as adsorbents. The adsorption effect of graphene aerogel was proved that it is more effective than activated carbon. It indicates that graphene aerogel is expected to become a new type of strong adsorption material. In the part of regression analysis, all the adsorption isotherms have a good correlation with the Langmuir isotherm. In the experiments of desorption and regeneration, it was confirmed that graphene aerogel not only has excellent adsorption characteristics, but also has the value of recycling. Keywords: graphene aerogel, gas adsorption, volatile organic compounds.

Topic Category 工學院 > 化學工程研究所
工程學 > 化學工業
  1. [1] L. Wu, Z. Qin, L. Zhang, T. Meng, F. Yu, and J. Ma, “CNT-Enhanced Amino-Functional Graphene Aerogel Adsorbent for Highly Efficient Removal of Formaldehyde,” New Journal of Chemistry, vol. 41, no. 7, pp. 2527-2533, Feb. 2017.
  2. [2] S. M. Joshi, “The Sick Building Syndrome,” Indian J Occup Environ Med., vol. 12, no. 2, pp. 61-64, Aug. 2008.
  3. [3] P. S. Burge, “Sick Building Syndrome,” Occupational and Environmental Medicine, vol. 61, no. 2, pp. 185-190, 2004.
  4. [4] C. A. Redlich, J. Sparer, and M. R. Cullen, “Sick-Building Syndrome,” The Lancet, vol. 349, no. 9057, pp. 1013-1016, Apr. 1997.
  5. [5] 行政院環境保護署,「揮發性有機物空氣汙染管制及排放標準」,1997年2月5日。
  6. [6] J. Säteri, Performance Criteria of Buildings for Health and Comfort, CIB Publication, 2004.
  7. [7] 中國國家質量監督檢驗檢疫總局,「室內空氣質量標準(GB/T 18883-2002)」,2002年11月19日。
  8. [8] 日本財團法人建材試驗中心,「建材からのVOC放散速度基準」,2008年4月1日。
  9. [9] U.S. Consumer Product Safety Commission(CPSC), An Update on Formalhehyde, 2015.
  10. [10] United States Department of Health and Human Services, Manufacture of Paint and Allied Coating Products, NIOSH, 1984.
  11. [11] European Environment Agency, Establishing the Ecological Criteria for the Award of the EU Ecolabel for Furniture, 2016.
  12. [12] 經濟部工業局,「揮發性有機物廢氣減量及處理技術手冊」,2007年。
  13. [13] 王卿昧,奈米孔洞吸附劑吸附揮發性有機物之吸附平衡研究,私立中原大學化學工程學系碩士論文,2003。
  14. [14] J. Peng and S. Wang, “Performance and Characterization of Supported Metal Catalysts for Complete Oxidation of Formaldehyde at Low Temperatures,” Applied Catalysis B: Environmental, vol. 73, no. 3-4, pp. 282-291, May 2007.
  15. [15] H. Liu, X. Ye, Z. Lian, Y. Wen, and W. Shangguan, “Experimental Study of Photocatalytic Oxidation of Formaldehyde and its by-Products,” Research on Chemical Intermediates, vol. 32, no. 1, pp. 9-16, Jan. 2006.
  16. [16] D. P. Bernabe, R. A. S. Herrera, B. Doma, M. L. Fu, Y. Dong, and Y. F. Wang, “Adsorption of Low Concentration Formaldehyde in Air Using Ethylene-Diamine-Modified Diatomaceous Earth,” Aerosol Air Qual. Res., vol. 15, no. 4, pp. 1652-1661, Aug. 2015.
  17. [17] J. Pei and J. S. Zhang, “On the Performance and Mechanisms of Formaldehyde Removal by Chemi-Sorbents,” Chemical Engineering Journal, vol. 167, no. 1, pp. 59-66, Feb. 2011.
  18. [18] P. Harriott and A. T. Y. Cheng, “Kinetics of Spent Activated Carbon Regeneration,” AIChE Journal, vol. 34, no. 10, pp. 1656-1662, Oct. 1998.
  19. [19] K. S. W. Sing, D. H. Everett, R. A. W. Haul, L. Moscou, R. A. Pieroti, J. Rouquerol, and T. Siemieniewska, “Reporting Physisorption Data for Gas/Solid Systems,” Pure Applied Chemistry, vol. 54, no. 11, pp. 2201-2218, 1982.
  20. [20] 笙卉,氮摻雜石墨烯之合成與鑑定於氧氣還原反應之應用,清華大學化學工程學系學位論文,2015。
  21. [21] 林怡君,石墨烯量產技術與產業應用展望,台灣安固強材料有限公司,2007年。
  22. [22] H. Sun, Z. Xu, and C. Gao, “Multifunctional, Ultra-Flyweight, Synergistically Assembled Carbon Aerogels,” Advanced Materials, vol. 25, no. 18, pp. 2554-2560, Feb. 2013.
  23. [23] G. Gorgolis1 and C. Galiotis, “Graphene Aerogels: A Review,” IOP Science, vol. 4, no. 3, June 2017.
  24. [24] S. Brunauer, L. S. Deming, W. E. Deming, and E. Teller, “On a Theory of the van der Waals Adsorption of Gases,” Journal of the American Chemical Society, vol. 62, no. 7, pp. 1723-1732, July 1940.
  25. [25] M. Thommes, K. Kaneko, A. V. Neimark, J. P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, and K. S.W. Sing, “Physisorption of Gases, with Special Reference to the Evaluation of Surface Area and Pore Size Distribution (IUPAC Technical Report),” Pure and Applied Chemistry, vol. 87, no. 9, pp. 1052-1069, July 2015.
  26. [26] I. Langmuir, “The Adsorption of Gases on Plane Surface of Glass Mica and Platinum,” J. Am. Chem. Soc., vol. 40, pp. 1361, 1918.
  27. [27] D. D. Do, Adsorption Analysis: Equilibrium and Kinetics, London: Imperial College Press, 1998.
  28. [28] D. M. Ruthven, Principles of Adsorption and Adsorption Process, NY: John Wiley Sons Inc., 1984.
  29. [29] D. P. Valenzuela and A. L. Myers, Adsorption Equilibrium Data Handbook, 1989.
  30. [30] H. V. Bekkum, E. M. Flanigen, P. A. Jacobs, and J. C. Jansen, Introduction to Zeolite Science and Practice, 2nd ed., Netherlands: Elsevier Science, 1991.
  31. [31] K. Nakai, “Development of Automatic Adsorption Apparatus for Binary Mixture: Measurement of Individual Adsorption Isotherms of Ethanol and Water from Their Mixed Vapors by Active Carbon Fiber,” Journal of Colloid and Interface Science, vol. 240, no. 1, pp. 17-23, Aug. 2001.
  32. [32] Y. J. Park, S. J. Lee, J. H. Moon, D. K. Choi, and C. H. Lee, “Adsorption Equilibria of O2, N2, and Ar on Carbon Molecular Sieve and Zeolites 10X, 13X, and LiX,” Journal of Chemical Engineering Data, vol. 51, no. 3, pp. 1001-1008, 2006.
  33. [33] M. R. Smith. Jr., E. W. Bittner, W. Shi, J. K. Johnson, and B. C. Bockrath, “Chemical Activation of Single-Walled Carbon Nanotubes for Hydrogen Adsorption,” The Journal of Physical Chemistry B, vol. 107, no. 16, pp. 3752-3760, Apr. 2003.
  34. [34] W. G. Shim, J. W. Lee, and H. Moon, “Adsorption of Carbon Tetrachloride and Chloroform on Activated Carbon at (300.15, 310.15, 320.15, and 330.15) K,” Journal of Chemical Engineering Data, vol. 48, no. 2, pp. 286-290, Jan. 2003.
  35. [35] 全國法規資料庫,勞工作業場所容許暴露標準,「空氣中有害物容許濃度」,2018年3月14日。
  36. [36] X. Zhang, B. Gao, A. E. Creamer, C. Cao, and Y. Li, “Adsorption of VOCs onto Engineered Carbon Materials: A Review,” Journal of Hazardous Materials, vol. 338, pp. 102-123, Sep. 2017.
  37. [37] S. H. Hsu, C. S. Huang, T. W. Chung, and S. Gao, “Adsorption of Chlorinated Volatile Organic Compounds Using Activated Carbon Made from Jatropha Curcas Seeds,” Journal of the Taiwan Institute of Chemical, vol. 45, no. 5, pp. 2526-2530, Sep. 2014.