Translated Titles

Applications of Novel Spinel-based Metal Sulfide Anode Materials for Lithium-ion Battery





Key Words

鋰離子電池 ; 過渡金屬硫化物 ; 高能球磨 ; 溶劑熱法 ; 非原位分析 ; Lithium-ion battery ; Solvothermal ; Ex-situ analysis ; Transition-metal sulfides ; High energy ball-milling



Volume or Term/Year and Month of Publication


Academic Degree Category




Content Language


Chinese Abstract

近年來,隨著科技蓬勃發展,市場對於通訊設備和電動汽車市場的需求遽增,因此鋰離子電池在這20多年中得到廣泛的發展與研究,鋰離子電池不僅需要高能量密度,還需要高理論電容量,才可以為電子設備提供高容量並減少充電時間,因此我們成功開發新穎的儲能負極材料並應用於鋰離子電池。 在這項研究中,我們主要透過溶劑熱法成功製備CuIn2S4並且透過高能球磨技術製備出CuIn2S4/C複合材料作為鋰離子電池的負極材料,使用X光繞射儀(X-ray diffraction, XRD)、掃描式電子顯微鏡(Scanning electronic microscopy, SEM)和高解析穿透式電子顯微鏡(High-resolution transmission electron microscopy, HR-TEM)對CuIn2S4和CuIn2S4/C複合材料的晶體結構和表面形貌進行分析,在電化學之表現CuIn2S4的可逆電容量在0.2 A/g和1 A/g的電流密度下分別為349 mAh/g和176 mAh/g,而經過高能球磨後,CuIn2S4/C複合材料的高速率充放電能力和可逆容量分別提高到在0.2 A/g的電流密度下為717 mAh/g和1 A/g的電流密度下591 mAh/g,另外,CuIn2S4的循環穩定性也成功被改善,CuIn2S4/C複合材料在5 A/g的電流密度下進行500次充放電循環之後還可以保有376 mAh/g。為了了解電化學反應機理,進行充放電過程中對CuIn2S4極板進行非原位以及原位的XRD測量。 接著,透過溶劑熱法成功製備MgIn2S4,並且使用奈米碳管進行複合,製備出CNT-MgIn2S4複合材料作為鋰離子電池的負極。當CNT的添加量為1 wt.%時具有較佳的電化學性能,在0.5 A/g的電流密度下充放電200次循環後,電容量仍有184 mAh/g,而過多的CNT會產生團聚現象,導致電化學性能不佳,隨著CNT的添加量增加,在交流阻抗分析中,阻抗值也隨之增加。最後,我們針對不同黏著劑對於此材料在電性上的表現進行探討,當使用水性黏著劑CMC/SBR時具有較佳的電化學表現,0.5 A/g的電流密度下充放電200次循環後,保有215 mAh/g的可逆電容量。

English Abstract

The corresponding lithium-ion batteries (LIBs) technology have been widely developed in more than 20 years because of the needing for mobile devices and electric vehicles market. LIBs required not only high energy density but also high specific capacity, therefore providing high capacity and decreased recharge time for electric devices. In this study, we focused on CuIn2S4/C composite as anode materials for Li-ion batteries by using hydrothermal reaction and subsequently high energy ball-milling technique. The crystal structure and surface morphology of as-synthesized CuIn2S4 and CuIn2S4/C composite were characterized by X-ray diffraction (XRD), scanning electronic microscopy (SEM) and high-resolution transmission electron microscopy (HR-TEM). The reversible capacity of pristine CuIn2S4 sample displays 349 mAh/g and 176 mAh/g at current density of 0.2 A/g and at 1 A/g, respectively. After introducing high energy ball milling with carbon black, the rate capability and reversible capacity of CuIn2S4/C composite anode dramatically improved to 717 mAh/g at 0.2 A/g and 591 mAh/g at 1 A/g, respectively. In addition, the cycle stability of CuIn2S4 is also enhanced. The as-synthesized CuIn2S4/C composite demonstrates as high as 376 mAh/g under 5 A/g for more than 500 cycles without fading. In order to understand reaction mechanism, ex-situ XRD and in-situ XRD measurement of CuIn2S4 anode are carried out during charge and discharge processes. In the second part, we focused on MgIn2S4 by hydrothermal method and used carbon nanotubes to prepare CNT-MgIn2S4 composite material as anode material for lithium-ion battery. When the CNT addition amount is 1 wt.%, it has better electrochemical performance. After 200 cycles, CNT1-MgIn2S4 displays 184 mAh/g at current density of 0.5 A/g. Adding too much CNTs will cause agglomeration, and then lead electrochemical performance not good. With increase the content of CNTs, the impedance also increases. Lastly, we focused on the electrochemical performance of MgIn2S4 involve the use of non-aqueous (PVDF) and aqueous (CMC+SBR) binders. With the aid of CMC+SBR, MgIn2S4 obtained a reversible capacity of 215 mAh/g after 200 cycles at a current density is 0.5 A/g. However, the capacity of the PVDF electrode is 77.3 mAh/g after 200 cycles at a current density is 0.5 A/g. It can be seen that when CMC+SBR is used as the binder, the electrode can still maintain a certain capacity at higher current density, and will not be destroyed.

Topic Category 工學院 > 化學工程研究所
工程學 > 化學工業
  1. [1] 郭迺鋒, 楊浩彥, 林政勳, and 方文秀, "鋰電池產業對台灣經濟發展影響的研究投入產出方法的分析," 2011.
  2. [2] 黃可龍, 王兆翔, and 劉素琴, 鋰離子電池原理與技術. 五南圖書出版公司, 2010.
  3. [3] 李文雄, 鋰電池E世代的能源 (行政院國科會科學發展月刊). 2003.
  4. [4] 許家興. 車輛研測資訊 [Online].
  5. [5] M. S. Whittingham, "Electrical energy storage and intercalation chemistry," Science, vol. 192, no. 4244, pp. 1126-1127, 1976.
  6. [6] S. Basu, "Early studies on anodic properties of lithium intercalated graphite," Journal of power sources, vol. 81, pp. 200-206, 1999.
  7. [7] D. Murphy, F. Di Salvo, J. Carides and J. Waszczak, "Topochemical reactions of rutile related structures with lithium," Materials Research Bulletin, vol. 13, no. 12, pp. 1395-1402, 1978.
  8. [8] M. Lazzari and B. Scrosati, "A cyclable lithium organic electrolyte cell based on two intercalation electrodes," Journal of The Electrochemical Society, vol. 127, no. 3, p. 773, 1980.
  9. [9] J. Dahn, U. Von Sacken, M. Juzkow and H. Al‐Janaby, "Rechargeable LiNiO2/carbon cells," Journal of the Electrochemical Society, vol. 138, no. 8, p. 2207, 1991.
  10. [10] X. Judez, G. G. Eshetu, C. Li, L. M. Rodriguez-Martinez, H. Zhang and M. Armand, "Opportunities for rechargeable solid-state batteries based on Li-intercalation cathodes," Joule, vol. 2, no. 11, pp. 2208-2224, 2018.
  11. [11] J.-M. Tarascon and M. Armand, "Issues and challenges facing rechargeable lithium batteries," Materials for sustainable energy: a collection of peer-reviewed research and review articles from Nature Publishing Group, pp. 171-179, 2011.
  12. [12] R. Liu, J. Duay and S. B. Lee, "Heterogeneous nanostructured electrode materials for electrochemical energy storage," Chemical Communications, vol. 47, no. 5, pp. 1384-1404, 2011.
  13. [13] R. Koksbang, J. Barker, H. Shi and M. Saidi, "Cathode materials for lithium rocking chair batteries," Solid State Ionics, vol. 84, no. 1-2, pp. 1-21, 1996.
  14. [14] D. A. Brownson and C. E. Banks, "The handbook of graphene electrochemistry," 2014.
  15. [15] P. G. Bruce, "Energy storage beyond the horizon: Rechargeable lithium batteries," Solid State Ionics, vol. 179, no. 21-26, pp. 752-760, 2008.
  16. [16] D. Liu and G. Cao, "Engineering nanostructured electrodes and fabrication of film electrodes for efficient lithium ion intercalation," Energy Environmental Science, vol. 3, no. 9, pp. 1218-1237, 2010.
  17. [17] J. Maier, "Nanoionics: ion transport and electrochemical storage in confined systems," Materials for Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group, pp. 160-170, 2011.
  18. [18] P. Roy and S. K. Srivastava, "Nanostructured anode materials for lithium ion batteries," Journal of Materials Chemistry A, vol. 3, no. 6, pp. 2454-2484, 2015.
  19. [19] Petkov, V., Prasai, B., Ren, Y., Shan, S., Luo, J., Joseph, P. and Zhong, C. J., "Solving the nanostructure problem: exemplified on metallic alloy nanoparticles," Nanoscale, vol. 6, no. 17, pp. 10048-10061, 2014.
  20. [20] Z. Xiong, Y. S. Yun and H.-J. Jin, "Applications of carbon nanotubes for lithium ion battery anodes," Materials, vol. 6, no. 3, pp. 1138-1158, 2013.
  21. [21] N. Yamakawa, M. Jiang, B. Key and C. P. Grey, "Identifying the local structures formed during lithiation of the conversion material, iron fluoride, in a Li ion battery: a solid-state NMR, X-ray diffraction, and pair distribution function analysis study," Journal of the American Chemical Society, vol. 131, no. 30, pp. 10525-10536, 2009.
  22. [22] Xiao Hua, Rosa Robert, Lin-Shu Du, Kamila M. Wiaderek, Michal Leskes, Karena W. Chapman, Peter J. Chupas and Clare P. Grey, "Comprehensive study of the CuF2 conversion reaction mechanism in a lithium ion battery," The Journal of Physical Chemistry C, vol. 118, no. 28, pp. 15169-15184, 2014.
  23. [23] L. Li, F. Meng and S. Jin, "High-capacity lithium-ion battery conversion cathodes based on iron fluoride nanowires and insights into the conversion mechanism," Nano Letters, vol. 12, no. 11, pp. 6030-6037, 2012.
  24. [24] Wei Huang, Shuo Li, Xianyi Cao, Chengyi Hou, Zhen Zhang, Jinkui Feng, Lijie Ci, Pengchao Si, and Qijin Chi, "Metal–organic framework derived iron sulfide–carbon core–shell nanorods as a conversion-type battery material," ACS Sustainable Chemistry Engineering, vol. 5, no. 6, pp. 5039-5048, 2017.
  25. [25] C. Wu, P. Kopold, P. A. van Aken, J. Maier, and Y. Yu, "High Performance Graphene/Ni2P Hybrid Anodes for Lithium and Sodium Storage through 3D Yolk–Shell‐Like Nanostructural Design," Advanced Materials, vol. 29, no. 3, p. 1604015, 2017.
  26. [26] J. Mao, X. Fan, C. Luo and C. Wang, "Building self-healing alloy architecture for stable sodium-ion battery anodes: a case study of tin anode materials," ACS Applied Materials Interfaces, vol. 8, no. 11, pp. 7147-7155, 2016.
  27. [27] W. Zhang, J. Mao, W. K. Pang, Z. Guo, and Z. Chen, "Large-scale synthesis of ternary Sn5SbP3/C composite by ball milling for superior stable sodium-ion battery anode," Electrochimica Acta, vol. 235, pp. 107-113, 2017.
  28. [28] Sun, W., Rui, X., Zhu, J., Yu, L., Zhang, Y., Xu, Z, Madhavi, S and Yan, Q, "Ultrathin nickel oxide nanosheets for enhanced sodium and lithium storage," Journal of power sources, vol. 274, pp. 755-761, 2015.
  29. [29] L. Su, Y. Jing and Z. Zhou, "Li ion battery materials with core–shell nanostructures," Nanoscale, vol. 3, no. 10, pp. 3967-3983, 2011.
  30. [30] W.-J. Zhang, "A review of the electrochemical performance of alloy anodes for lithium-ion batteries," Journal of Power Sources, vol. 196, no. 1, pp. 13-24, 2011.
  31. [31] L. Beaulieu, K. Eberman, R. Turner, L. Krause and J. Dahn, "Colossal reversible volume changes in lithium alloys," Electrochemical and Solid State Letters, vol. 4, no. 9, p. A137, 2001.
  32. [32] S. Menkin, Z. Barkay, D. Golodnitsky, and E. Peled, "Nanotin alloys supported by multiwall carbon nanotubes as high-capacity and safer anode materials for EV lithium batteries," Journal of Power Sources, vol. 245, pp. 345-351, 2014.
  33. [33] Yang, J., Zhou, T., Zhu, R., Chen, X., Guo, Z., Fan, J., Liu, H. K. and Zhang, W. X.., "Highly Ordered Dual Porosity Mesoporous Cobalt Oxide for Sodium‐Ion Batteries," Advanced Materials Interfaces, vol. 3, no. 3, p. 1500464, 2016.
  34. [34] Li, Q., Li, Z., Zhang, Z., Li, C., Ma, J., Wang, C., Ge, X., Dong, S. and Yin, L., "Low‐Temperature Solution‐Based Phosphorization Reaction Route to Sn4P3/Reduced Graphene Oxide Nanohybrids as Anodes for Sodium Ion Batteries," Advanced Energy Materials, vol. 6, no. 15, p. 1600376, 2016.
  35. [35] J. Qian, Y. Xiong, Y. Cao, X. Ai, and H. Yang, "Synergistic Na-storage reactions in Sn4P3 as a high-capacity, cycle-stable anode of Na-ion batteries," Nano Letters, vol. 14, no. 4, pp. 1865-1869, 2014.
  36. [36] N. Nitta, F. Wu, J. T. Lee, and G. Yushin, "Li-ion battery materials: present and future," Materials Today, vol. 18, no. 5, pp. 252-264, 2015.
  37. [37] Chan, C. K., Peng, H., Liu, G., McIlwrath, K., Zhang, X. F., Huggins, R. A. and Cui, Y., "High-performance lithium battery anodes using silicon nanowires," Nature Nanotechnology, vol. 3, no. 1, p. 31, 2008.
  38. [38] Chen, Y., Huang, Z., Li, X., Li, S., Zhou, Z., Zhang, Y. and Yu, B, "In vitro biocompatibility and osteoblast differentiation of an injectable chitosan/nano-hydroxyapatite/collagen scaffold," Journal of Nanomaterials, vol. 2012, p. 3, 2012.
  39. [39] Dong, Y., Liu, S., Liu, Y., Tang, Y., Yang, T., Wang, X., Wang, Z., Zhao, Z. and Qiu, J., "Rational design of metal oxide hollow nanostructures decorated carbon nanosheets for superior lithium storage," Journal of Materials Chemistry A, vol. 4, no. 45, pp. 17718-17725, 2016.
  40. [40] J. K. Lee, C. Oh, N. Kim, J.-Y. Hwang and Y.-K. Sun, "Rational design of silicon-based composites for high-energy storage devices," Journal of Materials Chemistry A, vol. 4, no. 15, pp. 5366-5384, 2016.
  41. [41] M.-S. Balogun, Y. Luo, W. Qiu, P. Liu and Y. Tong, "A review of carbon materials and their composites with alloy metals for sodium ion battery anodes," Carbon, vol. 98, pp. 162-178, 2016.
  42. [42] 淋育潤 and 陳金銘, 奈米複合材料技術在鋰離子電池負極材料之應用. 2004.
  43. [43] H. Li, L. Shi, Q. Wang, L. Chen and X. Huang, "Nano-alloy anode for lithium ion batteries," Solid State Ionics, vol. 148, no. 3-4, pp. 247-258, 2002.
  44. [44] P. Nithyadharseni, M. Reddy, B. Nalini, M. Kalpana, and B. V. Chowdari, "Sn-based intermetallic alloy anode materials for the application of lithium ion batteries," Electrochimica Acta, vol. 161, pp. 261-268, 2015.
  45. [45] H. Li, L. Shi, W. Lu, X. Huang, and L. Chen, "Studies on capacity loss and capacity fading of nanosized SnSb alloy anode for Li-ion batteries," Journal of The Electrochemical Society, vol. 148, no. 8, p. A915, 2001.
  46. [46] Li, J. T., Swiatowska, J., Seyeux, A., Huang, L., Maurice, V., Sun, S. G. and Marcus, P., "XPS and ToF-SIMS study of Sn–Co alloy thin films as anode for lithium ion battery," Journal of Power Sources, vol. 195, no. 24, pp. 8251-8257, 2010.
  47. [47] M. R. Wagner, P. Raimann, A. Trifonova, K.-C. Moeller, J. Besenhard, and M. Winter, "Electrolyte decomposition reactions on tin-and graphite-based anodes are different," Electrochemical and Solid State Letters, vol. 7, no. 7, p. A201, 2004.
  48. [48] K. T. Lee, Y. S. Jung and S. M. Oh, "Synthesis of tin-encapsulated spherical hollow carbon for anode material in lithium secondary batteries," Journal of the American Chemical Society, vol. 125, no. 19, pp. 5652-5653, 2003.
  49. [49] Zhang, W. M., Hu, J. S., Guo, Y. G., Zheng, S. F., Zhong, L. S., Song, W. G., and Wan, L. J., "Tin‐nanoparticles encapsulated in elastic hollow carbon spheres for high‐performance anode material in lithium‐Ion batteries," Advanced Materials, vol. 20, no. 6, pp. 1160-1165, 2008.
  50. [50] A. S. Arico, P. Bruce, B. Scrosati, J.-M. Tarascon and W. Van Schalkwijk, "Nanostructured materials for advanced energy conversion and storage devices," Nature Materials, vol. 4, no. 5, p. 366, 2005.
  51. [51] P. Poizot, S. Laruelle, S. Grugeon, L. Dupont and J. Tarascon, "Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries," Nature, vol. 407, no. 6803, p. 496, 2000.
  52. [52] Kang, Y. M., Song, M. S., Kim, J. H., Kim, H. S., Park, M. S., Lee, J. Y., Liu, H.K. and Dou, S. X., "A study on the charge–discharge mechanism of Co3O4 as an anode for the Li ion secondary battery," Electrochimica Acta, vol. 50, no. 18, pp. 3667-3673, 2005.
  53. [53] L.-X. Zhang, Y.-L. Wang, H.-F. Jiu, W.-H. Zheng, J.-X. Chang, and G.-F. He, "Controllable synthesis of spinel nano-CoMn2O4 via a solvothermal carbon templating method and its application in lithium ion batteries," Electrochimica Acta, vol. 182, pp. 550-558, 2015.
  54. [54] Lin, Y., Qiu, Z., Li, D., Ullah, S., Hai, Y., Xin, H., Liao, W.,Yang, B., Fan, H., Xu, J. and Zhu, C., "NiS2@ CoS2 nanocrystals encapsulated in N-doped carbon nanocubes for high performance lithium/sodium ion batteries," Energy Storage Materials, vol. 11, pp. 67-74, 2018.
  55. [55] Zhang, Y., Wang, N., Sun, C., Lu, Z., Xue, P., Tang, B., Bai, Z. and Dou, S., "3D spongy CoS2 nanoparticles/carbon composite as high-performance anode material for lithium/sodium ion batteries," Chemical Engineering Journal, vol. 332, pp. 370-376, 2018.
  56. [56] W. Cheng, H. Di, Z. Shi and D. Zhang, "Synthesis of ZnS/CoS/CoS2@ N-doped carbon nanoparticles derived from metal-organic frameworks via spray pyrolysis as anode for lithium-ion battery," Journal of Alloys and Compounds, p. 154607, 2020.
  57. [57] Wang, Y., Zhang, Y., Li, H., Peng, Y., Li, J., Wang, J., Hwang, B. and Zhao, J., "Realizing high reversible capacity: 3D intertwined CNTs inherently conductive network for CuS as an anode for lithium ion batteries," Chemical Engineering Journal, vol. 332, pp. 49-56, 2018.
  58. [58] Xu, X., Li, L., Chen, H., Guo, X., Zhang, Z., Liu, J., Mao, C. and Li, G., "Constructing heterostructured FeS2/CuS nanospheres as high rate performance lithium ion battery anodes," Inorganic Chemistry Frontiers, vol. 7, no. 9, pp. 1900-1908, 2020.
  59. [59] Ding, C., Su, D., Ma, W., Zhao, Y., Yan, D., Li, J. and Jin, H., "Design of hierarchical CuS/graphene architectures with enhanced lithium storage capability," Applied Surface Science, vol. 403, pp. 1-8, 2017.
  60. [60] Sun, L., Liu, X., Ma, T., Zheng, L., Xu, Y., Guo, X. and Zhang, J., "In2S3 nanosheets anchored on N-doped carbon fibers for improved lithium storage performances," Solid State Ionics, vol. 329, pp. 8-14, 2019.
  61. [61] Wang, C., Mu, C., Xiang, J., Wang, B., Zhang, C., Song, J. and Wen, F., "Microwave synthesized In2S3@ CNTs with excellent properties in lithium‐ion battery and electromagnetic wave absorption," Chinese Journal of Chemistry, vol. 36, no. 2, pp. 157-161, 2018.
  62. [62] Zhou, J., Qin, J., Zhang, X., Shi, C., Liu, E., Li, J. Zhao, N. and He, C., "2D space-confined synthesis of few-layer MoS2 anchored on carbon nanosheet for lithium-ion battery anode," ACS Nano, vol. 9, no. 4, pp. 3837-3848, 2015.
  63. [63] Teng, Y., Zhao, H., Zhang, Z., Li, Z., Xia, Q., Zhang, Y., Zhao, L., Du, X., Lv, P. and Świerczek, K., "MoS2 nanosheets vertically grown on graphene sheets for lithium-ion battery anodes," ACS Nano, vol. 10, no. 9, pp. 8526-8535, 2016.
  64. [64] X. Du, H. Zhao, Y. Lu, Z. Zhang, A. Kulka, and K. Świerczek, "Synthesis of core-shell-like ZnS/C nanocomposite as improved anode material for lithium ion batteries," Electrochimica Acta, vol. 228, pp. 100-106, 2017.
  65. [65] Li, J., Yan, D., Zhang, X., Hou, S., Lu, T., Yao, Y. and Pan, L., "ZnS nanoparticles decorated on nitrogen-doped porous carbon polyhedra: a promising anode material for lithium-ion and sodium-ion batteries," Journal of Materials Chemistry A, vol. 5, no. 38, pp. 20428-20438, 2017.
  66. [66] Zhang, Y., Wang, P., Yin, Y., Zhang, X., Fan, L., Zhang, N. and Sun, K., "Heterostructured SnS-ZnS@ C hollow nanoboxes embedded in graphene for high performance lithium and sodium ion batteries," Chemical Engineering Journal, vol. 356, pp. 1042-1051, 2019.
  67. [67] T. Zheng, G. Li, X. Meng, S. Li and M. Ren, "Porous Core–Shell CuCo2S4 Nanospheres as Anode Material for Enhanced Lithium‐Ion Batteries," Chemistry–A European Journal, vol. 25, no. 3, pp. 885-891, 2019.
  68. [68] P. Wang, Y. Zhang, B. Guan, L. Fan, N. Zhang, and K. Sun, "Fabrication of CuCo2S4 hollow sphere@ N/S doped graphene composites as high performance anode materials for lithium ion batteries," Ceramics International, vol. 44, no. 10, pp. 11905-11909, 2018.
  69. [69] M.-H. Wang and S.-P. Guo, "Highly uniform hollow CuCo2S4@ C dodecahedra derived from ZIF–67 for high performance lithium–ion batteries," Journal of Alloys and Compounds, p. 154978, 2020.
  70. [70] Q. Li et al., "One‐pot synthesis of CuCo2S4 sub‐microspheres for high‐performance lithium‐/sodium‐ion batteries," ChemElectroChem, vol. 6, no. 5, pp. 1558-1566, 2019.
  71. [71] Li, Q., Jiao, Q., Feng, X., Zhao, Y., Li, H., Feng, C., Shi, D., Liu, H., Wang, H. and Bai, X., "A novel binary metal sulfide hybrid Li-ion battery anode: Three-dimensional ZnCo2S4/NiCo2S4 derived from metal-organic foams enables an improved electron transfer and ion diffusion performance," Journal of Alloys and Compounds, vol. 817, p. 153293, 2020.
  72. [72] Yuan, Y. F., Ye, L. W., Zhang, D., Chen, F., Zhu, M., Wang, L. N., Yin, S. M., Cai, S. Y. and Guo, S. Y., "NiCo2S4 multi-shelled hollow polyhedrons as high-performance anode materials for lithium-ion batteries," Electrochimica Acta, vol. 299, pp. 289-297, 2019.
  73. [73] X. Zuo, Y. Song and M. Zhen, "Carbon-coated NiCo2S4 multi-shelled hollow microspheres with porous structures for high rate lithium ion battery applications," Applied Surface Science, vol. 500, p. 144000, 2020.
  74. [74] D. Bai, F. Wang, J. Lv, F. Zhang and S. Xu, "Triple-confined well-dispersed biactive NiCo2S4/Ni0. 96S on graphene aerogel for high-efficiency lithium storage," ACS Applied Materials Interfaces, vol. 8, no. 48, pp. 32853-32861, 2016.
  75. [75] H. Chen, X. Ma, and P. K. Shen, "NiCo2S4 nanocores in-situ encapsulated in graphene sheets as anode materials for lithium-ion batteries," Chemical Engineering Journal, vol. 364, pp. 167-176, 2019.
  76. [76] Z. Zhang et al., "Spray-drying assisted hydrothermal synthesis of ZnIn2S4@ GO as anode material for improved lithium ion batteries," Int. J. Electrochem. Sci, vol. 15, pp. 8797-8807, 2020.
  77. [77] P. Wang, Y. Zhang, Y. Yin, L. Fan, N. Zhang and K. Sun, "In situ synthesis of CuCo2S4@ N/S-doped graphene composites with pseudocapacitive properties for high-performance lithium-ion batteries," ACS Applied Materials Interfaces, vol. 10, no. 14, pp. 11708-11714, 2018.
  78. [78] Li, Q., Jiao, Q., Li, H., Zhou, W., Feng, X., Qiu, B., Shi, Q., Zheng, Y., Zhao, Y. and Feng, C., "In-situ preparation of multi-layered sandwich-like CuCo2S4/rGO architectures as anode material for high-performance lithium and sodium ion batteries," Journal of Alloys and Compounds, vol. 845, p. 156183, 2020.
  79. [79] L. Zhang, L. Zuo, W. Fan, and T. Liu, "NiCo2S4 nanosheets grown on 3D networks of nitrogen‐doped graphene/carbon nanotubes: advanced anode materials for lithium‐ion batteries," ChemElectroChem, vol. 3, no. 9, pp. 1384-1391, 2016.
  80. [80] J. Ren, R.-P. Ren and Y.-K. Lv, "A flexible 3D graphene@ CNT@ MoS2 hybrid foam anode for high-performance lithium-ion battery," Chemical Engineering Journal, vol. 353, pp. 419-424, 2018.
  81. [81] Chao, Y., Jalili, R., Ge, Y., Wang, C., Zheng, T., Shu, K. and Wallace, G. G., "Self‐assembly of flexible free‐standing 3D porous MoS2‐reduced graphene oxide structure for high‐performance lithium‐ion batteries," Advanced Functional Materials, vol. 27, no. 22, p. 1700234, 2017.
  82. [82] Jiang, Y., Guo, Y., Lu, W., Feng, Z., Xi, B., Kai, S., Zhang, J., Feng, J. and Xiong, S., "Rationally incorporated MoS2/SnS2 nanoparticles on graphene sheets for lithium-ion and sodium-ion batteries," ACS Applied Materials Interfaces, vol. 9, no. 33, pp. 27697-27706, 2017.
  83. [83] Xia, J., Liu, L., Jamil, S., Xie, J., Yan, H., Yuan, Y., Zhang, Y., Nie, S., Pan, J., Wang, X. and Cao, G., "Free-standing SnS/C nanofiber anodes for ultralong cycle-life lithium-ion batteries and sodium-ion batteries," Energy Storage Materials, vol. 17, pp. 1-11, 2019.
  84. [84] R. Verma, R. Kothandaraman and U. Varadaraju, "In-situ carbon coated CuCo2S4 anode material for Li-ion battery applications," Applied Surface Science, vol. 418, pp. 30-39, 2017.
  85. [85] R. Jin, Y. Cui, S. Gao, S. Zhang, L. Yang and G. Li, "CNTs@NC@CuCo2S4 nanocomposites: An advanced electrode for high performance lithium-ion batteries and supercapacitors," Electrochimica Acta, vol. 273, pp. 43-52, 2018.
  86. [86] Mahadadalkar, M. A., Kale, S. B., Kalubarme, R. S., Bhirud, A. P., Ambekar, J. D., Gosavi, S. W., Kulkarni, M. V., Park, C. and Kale, B. B., "Architecture of the CdIn2S4/graphene nano-heterostructure for solar hydrogen production and anode for lithium ion battery," RSC Advances, vol. 6, no. 41, pp. 34724-34736, 2016.
  87. [87] S. Zhang, K. Xu, and T. Jow, "Electrochemical impedance study on the low temperature of Li-ion batteries," Electrochimica Acta, vol. 49, no. 7, pp. 1057-1061, 2004.
  88. [88] T.-H. Nam, E.-G. Shim, J.-G. Kim, H.-S. Kim and S.-I. Moon, "Electrochemical performance of Li-ion batteries containing biphenyl, vinyl ethylene carbonate in liquid electrolyte," Journal of The Electrochemical Society, vol. 154, no. 10, pp. A957-A963, 2007.
  89. [89] A. Funabiki, M. Inaba, Z. Ogumi, S. i. Yuasa, J. Otsuji and A. Tasaka, "Impedance study on the electrochemical lithium intercalation into natural graphite powder," Journal of the Electrochemical Society, vol. 145, no. 1, pp. 172-178, 1998.
  90. [90] D. Aurbach, "Review of selected electrode–solution interactions which determine the performance of Li and Li ion batteries," Journal of Power Sources, vol. 89, no. 2, pp. 206-218, 2000.
  91. [91] S. Zhang, M. S. Ding, K. Xu, J. Allen and T. R. Jow, "Understanding solid electrolyte interface film formation on graphite electrodes," Electrochemical and Solid-State Letters, vol. 4, no. 12, pp. A206-A208, 2001.
  92. [92] T. Ong and H. Yang, "Lithium intercalation into mechanically milled natural graphite: electrochemical and kinetic characterization," Journal of The Electrochemical Society, vol. 149, no. 1, pp. A1-A8, 2002.
  93. [93] S. Yang, H. Song and X. Chen, "Electrochemical performance of expanded mesocarbon microbeads as anode material for lithium-ion batteries," Electrochemistry communications, vol. 8, no. 1, pp. 137-142, 2006.
  94. [94] P. Li, J.-Y. Hwang and Y.-K. Sun, "Nano/microstructured silicon–graphite composite anode for high-energy-density Li-ion battery," ACS Nano, vol. 13, no. 2, pp. 2624-2633, 2019.
  95. [95] Y. Guo, Y. Ao, P. Wang and C. Wang, "Mediator-free direct dual-Z-scheme Bi2S3/BiVO4/MgIn2S4 composite photocatalysts with enhanced visible-light-driven performance towards carbamazepine degradation," Applied Catalysis B: Environmental, vol. 254, pp. 479-490, 2019.
  96. [96] Zhang, R., Yang, X., Zhang, D., Qiu, H., Fu, Q., Na, H., Guo, Z., Du, F., Chen G. and Wei, Y., "Water soluble styrene butadiene rubber and sodium carboxyl methyl cellulose binder for ZnFe2O4 anode electrodes in lithium ion batteries," Journal of Power Sources, vol. 285, pp. 227-234, 2015.