Translated Titles

An experimental study and cost evaluation on membrane distillation for treating membrane bioreactor effluent from Industrial district





Key Words

薄膜蒸餾、再生水、薄膜生物處理、工業區廢水 ; Membrane distillation ; Industrial wastewater ; MBR effluent ; Reclaimed water



Volume or Term/Year and Month of Publication


Academic Degree Category




Content Language


Chinese Abstract

由於工業用水大增及氣候變遷等影響,導致臺灣時常面臨缺水的問題,基於生活污水及工業廢水量大,近年來產製再生水技術備受關注,且政府也積極推動此技術的發展,利用廢污水產製再生水具發展潛力。 本研究針對桃園觀音工業區污水處理廠的MBR放流水,利用PVDF管式模組進行直接接觸式薄膜蒸餾( DCMD )試驗,目標為探究該類放流水以薄膜蒸餾產水之可行性,最後嘗試估算DCMD產製再生水之成本。 首先探討進料溫度變化對通量之影響,以MBR放流水作為進料,以進料流量為5 L/min進行四小時實驗,當進料溫度從50°C提升至70°C,其平均通量從2.3 提升至8.4 kg/m^2‧hr,可發現提高進料溫度對通量有明顯增加。以MBR放流水為進料,進料及滲透端溫度分別為60及30°C,進行十二小時MD實驗,探討有無進行進料預處理對膜面結/積垢與產水水質之影響,在SEM圖中可觀察到經過預處理的進料,其膜面有較少的結垢,在EDS分析中可以推測兩者的膜面結垢主要為有機化合物及少量的無機鹽類。而滲透槽水質分析中,COD及BOD等皆有下降趨勢,這表示薄膜有效阻擋非揮發性有機化合物,且滲透槽液氯離子濃度下降,顯示薄膜對離子具有良好的阻擋效果,而放流水中游離氨揮發通過膜孔至滲透端,使滲透槽內的pH值、電導度及氨氮濃度皆有上升。經二十四小時MD操作後進料未經預處理者其後段的平均通量與前段相比約有12%的衰退,而經UF預處理者則有29%的衰退,用清水掃流膜面一小時並以相同條件操作2小時,進料未經預處理者具有97%的通量回復,而經預處理者則有94%的通量回復。最後本研究嘗試估算當有充足廢餘熱作為MD進料熱源的條件下,依據此MBR放流水為MD進料之實驗通量,進料溫度為60及70°C之產水成本分別是NT$ 29.0及22.1 /m^3。

English Abstract

Due to the climate change and increased demand in water for industry leads to the problem of water shortage recently in Taiwan. Considering the large amount of industrial wastewater and domestic sewage discharged relatively stable, using this wastewater to produce reclaimed water has a great potential in the future. In this study, direct contact membrane distillation (DCMD) with self-assembled capillary PVDF membrane module was used for conducting experiments with MBR effluent from Taoyuan Guanyin Industrial District Sewage Treatment Plant. The aim was to explore the feasibility of membrane distillation technology for treating this effluent. Finally, the cost of producing reclaimed water from the waste stream with DCMD was also evaluated. When the MBR effluent was used as the feed with a rate of 5 L/min(Re=6141 in the shell side of the module) , showed the average flux of four-hour operation increases from 2.3 to 8.4 kg/m^2‧hr by increasing the feed temperature from 50 to 70°C, where the permeate side was maintained at 30°C. The effect of MBR effluent with /without UF pretreatment for feed of 12 hrs DCMD run on the fouled/scaled of the membrane surface and the quality of the water produced was also investigated, where the feed and permeate temperature were 60 and 30°C, respectively. In the SEM images, it was observed that the feed with pretreatment can give less membrane fouling. The EDS analysis showed that the organic matter and a little amount of inorganic crystals are the main deposits on the membrane. The measurements of permeate COD and BOD indicated that the membrane completely reject non-volatile organic compounds and, the measurements of permeate chloride ion concentration showed that this ion was almost completely rejected. Based on the measurement of pH, conductivity and ammonia concentration in the permeate, it is indicated that part of the ammonia nitrogen in the MBR effluent is volatilized and transported through the membrane pores to the permeate side. Experiments results showed that the average flux of later period of the 24 hours DCMD operation has a decline of about 12% for the feed without UF pretreatment, while the feed with UF pretreatment has a higher decline to 29%. Using clean water by crossflow to flush the fouled membrane after 24 hrs MD operation, it was observed that the cleaned membrane can give a 97% recovery of flux for feed with MBR effluent, and 94 % recovery for MBR effluent with UF pretreatment. Finally, based on the additional premise of sufficient waste heat provided as the heat source for MD, the water production cost by applying MD with this MBR effluent was also evaluated to be 29 and 22.1 NT$/m3 for feed temperature at 60 and 70°C, respectively.

Topic Category 工學院 > 化學工程研究所
工程學 > 化學工業
  1. Al-Karaghouli, A. Kazmerski, L. L. (2013). Energy consumption and water production cost of conventional and renewable-energy-powered desalination processes. Renewable and Sustainable Energy Reviews, 24, 343-356.
  2. Al-Salmi, M., Laqbaqbi, M., Al-Obaidani, S., Al-Maamari, R. S., Khayet, M. Al-Abri, M.(2020). Application of membrane distillation for the treatment of oil field produced water. Desalination, 494, 114678.
  3. Andrés-Mañas, J. A., Roca, L., Ruiz-Aguirre, A., Acién, F. G., Gil, J. D. Zaragoza, G.(2020). Application of solar energy to seawater desalination in a pilot system based on vacuum multi-effect membrane distillation. Applied Energy, 258, 114068.
  4. Bui, V. A., Vu, L. T. T. Nguyen, M. H.(2010). Modelling the simultaneous heat and mass transfer of direct contact membrane distillation in hollow fibre modules. Journal of Membrane Science, 353, 85-93.
  5. Curcio, E., Ji, X., Profio, G. D., Sulaiman, A.O., Fontananova, E. Drioli, E.(2010). Membrane distillation operated at high seawater concentration factors: Role of the membrane on CaCO3 scaling in presence of humic acid. Journal of Membrane Science, 346, 263-269.
  6. Edwie, F. Chung, T. S.(2012). Development of hollow fiber membranes for water and salt recovery from highly concentrated brine via direct contact membrane distillation and crystallization. Journal of Membrane Science, 421-422, 111-123.
  7. Eykens, L., Sitter, K. D., Dotremont, C., Pinoy, L. Bruggen, B. V. D. (2017). Membrane synthesis for membrane distillation: A review. Separation and Purification Technology,182, 36-51.
  8. Gloede, M. Melin, T.(2008). Physical aspects of membrane scaling. Desalination, 224, 71–75.
  9. Gossi, L. B., Alvim, C. B., Alvares, C. M. S., Martins, M. F. Amaral M. C.S.(2020). Purifying surface water contaminated with industrial failure using direct contact membrane distillation. Separation and Purification Technology, 233, 116052.
  10. He, F., Gilron, J., Lee, H., Song, L. Sirkar, K. K.(2008). Potential for scaling by sparingly soluble salts in crossflow DCMD. Journal of Membrane Science, 311, 68–80.
  11. Hou, D., Yuan, Z., Tang, M., Wang, K. Wang, J.(2020). Effect and mechanism of an anionic surfactant on membrane performance during direct contact membrane distillation. Journal of Membrane Science, 595,117495.
  12. Kamranvand, F., Davey, C. J., Williams, L.,Parker, A., Jiang, Y., Tyrrel, S. McAdam, E. J.(2020). Ultrafiltration pretreatment enhances membrane distillation flux, resilience and permeate quality during water recovery from concentrated blackwater (urine/faeces). Separation and Purification Technology, 253, 117547.
  13. Kesieme, U. K., Milne, N., Aral, H., Cheng, C. Y. Duke, M. (2013). Economic analysis of desalination technologies in the context of carbon pricing, and opportunities for membrane distillation. Desalination, 323, 66-74.
  14. Khayet M. and Matsuura T.“Membrane Distillation Principles and Applications, Chap 15 Economics, Energy Analysis and Costs Evaluation in MD”.Membrane Distillation 2011, Pages 429-452.
  15. Kumar, R. V., Barbosa, M. O., Ribeiro, A. R., Morales-Torres, S., Pereira, M. F. R. Silva, A. M. T.(2020). Advanced oxidation technologies combined with direct contact membrane distillation for treatment of secondary municipal wastewater. Process Safety and Environmental Protection,140, 111-123.
  16. Lawson, K. W. Lloyd, D. R. (1997). Membrane distillation. Journal of Membrane Science, 124, 1-25.
  17. Liu, X., Tian, C., Sun, W., Zhao, Y. Shih, K.(2020). Secondary effluent purification towards reclaimed water production through the hybrid post-coagulation and membrane distillation technology: A preliminary test. Journal of Cleaner Production, 271, 121797.
  18. Madhumala, M.,Madhavi, D.,Sankarshana, T. Sridhar, S.(2014). Recovery of hydrochloric acid and glycerol from aqueous solutions in chloralkali and chemical process industries by membrane distillation technique. Journal of the Taiwan institute of Chemical Engineers, 45, 1249-1259.
  19. Mart´ınez, L. Rodr´ıguez-Maroto, J. M.(2008). Membrane thickness reduction effects on direct contact membrane distillation performance. Journal of Membrane Science, 312, 143–156.
  20. Noor, I., Coenen, J., Martin, A. Dahl, O.(2020). Performance assessment of chemical mechanical planarization wastewater treatment in nano-electronics industries using membrane distillation. Separation and Purification Technology, 235, 116201.
  21. Noor, I., Martin, A. Dahl, O.(2020). Techno-economic system analysis of membrane distillation process for treatment of chemical mechanical planarization wastewater in nanoelectronics industries. Separation and Purification Technology, 248, 117013.
  22. Phattaranawik, J., Jiraratananon, R. Fane, A. G.(2003). Effect of pore size distribution and air flux on mass transport in direct contact membrane distillation. Journal of Membrane Science, 215, 75-85.
  23. Rajwade, K., Barrios, A. C., Garcia-Segura, S. Perreault, F.(2020). Pore wetting in membrane distillation treatment of municipal wastewater desalination brine and its mitigation by foam fractionation. Chemosphere, 257, 127214.
  24. Ruiz-Aguirre, A., Andrés-Mañas, J. A., Fernández-Sevilla, J. M. Zaragoza, G.(2018). Experimental characterization and optimization of multi-channel spiral wound air gap membrane distillation modules for seawater desalination. Separation and Purification Technology, 205, 212-222.
  25. Silva, T. L. S., Morales-Torres, S., Esteves, C. M. P., Ribeiro, A. R., Nunes, O. C., Figueiredo, J. L. Silva, A. M. T.(2018). Desalination and removal of organic micropollutants and microorganisms by membrane distillation. Desalination, 437, 121-132.
  26. Sirkar K.K. and Song L., ”Pilot-scale studies for direct contact membrane distillation-based desalination process,” Desalination and Water Purification Research and Development Program Report No.134 (2009)
  27. Thomas, N., Mavukkandy, M. O., Loutatidou, S. Arafat, L. A. (2017). Membrane distillation research implementation: Lessons from the past five decades. Separation and Purification Technology, 189, 108-127.
  28. Usman, H. S., Touati, K. Rahaman, Md. S.(2021). An economic evaluation of renewable energy-powered membrane distillation for desalination of brackish water. Renewable Energy, 169, 1294-1304.
  29. Zhang, P., Knötig, P., Gray, S. Duke, M. (2015) Scale reduction and cleaning techniques during direct contact membrane distillation of seawater reverse osmosis brine. Desalination, 374, 20-30.
  30. 行政院環境保護署,建築物生活污水回收再利用建議事項,行政院環境保護署,2007年10月
  31. 林漢樺,薄膜蒸餾處理都市污水廠放流水之探討,碩士學位論文,中原大學化學工程學 研究所,桃園縣,(2017)
  32. 高雄市政府水利局,高雄市污水下水道第四階段檢討規劃,高雄市政府水利局,2016年7月
  33. 高雄市政府水利局,高雄市鳳山溪污水處理廠放流水回收再利用示範案可行性評估成果報告,高雄市政府水利局,2015年10月
  34. 高雄市政府水利局。鳳山水資源回收中心。檢自https://wrb.kcg.gov.tw/Business/SewageTreatment/TreatmentPlant/WaterResources/WaterResourceProcess.htm
  35. 黃彥瑋,都市汙水處理廠RO濃排液及MBR排放水以薄膜蒸餾產製再生水之實驗探討,碩士學位論文,中原大學化學工程學 研究所,桃園縣,(2019)
  36. 經濟部,產業穩定供水行動策略方案,經濟部,2018年5月
  37. 經濟部工業局,觀音污水處理廠,檢自https://www.moeaidb.gov.tw/iphw/kuangin/index.do?id=06
  38. 經濟部水利署,下水道系統再生水利用技術參考手冊,經濟部水利署,2版,2016年12月,14-25頁
  39. 經濟部水利署,再生水水質標準及使用辦法,經濟部水利署,2016年10月
  40. 經濟部水利署,再生水發展條例,經濟部水利署,2015年12月
  41. 朱敬平,工業廢水再生利用技術,工業汙水防治第136期,2016年7月