Title

Xbar與R管制圖的聯合經濟統計設計應用在自相關資料上

Translated Titles

The Joint Economic Statistical Design of Xbar and R Control Charts for Autocorrelated Data

DOI

10.6840/cycu200700506

Authors

柯佳甫

Key Words

韋伯分配 ; 窮舉法 ; 自相關的資料 ; X 與R 管制圖 ; 經濟統計性設計 ; Autocorrelated data ; ‾X and R control charts ; Weibull distribution ; Economic-statistical design ; Grid search method

PublicationName

中原大學工業工程研究所學位論文

Volume or Term/Year and Month of Publication

2007年

Academic Degree Category

碩士

Advisor

陳慧芬

Content Language

英文

Chinese Abstract

本論文研究探討在Costa以及Chen他們架構下的Xbar 與R管制圖的聯合經濟統 計設計。根據成本模型,我們假設品質特性測量值是服從自相關的時間序列模式 且系統在製程管制內時間服從韋伯分配。當我們設計一個管制圖時,必須決定四 個設計參數:樣本數n、抽樣間隔時間 h、X 管制圖上下限的距離因素 k1及R管 制圖上下限的距離因素 k2。 然而現在有非常多的文獻在探討資料是服從獨立性假設下之經濟統計設計 管制圖與自相關性資料管制圖,但是卻很少有文獻是研究上述兩種概念的結合。 因此,本論文探討上述兩種概念的結合情形。 在本論文中,我們是使用蒙地卡羅模擬在窮舉法下去找尋最佳的設計參數使 得每小時的期望成本為最低。我們同時也去做關於自相關性、不同程度的期望值 和變異數偏移及不同的韋伯參數下的敏感度分析。根據實驗結果,當自相關性呈 現正相關性的增加時,我們發現樣本數n、抽樣間隔時間h以及每小時的期望成本 會增加,但是管制上下限的距離因素k1及k2降低了。當平均數位移增加時,樣本 數n和抽樣間隔時間h及管制上下限的距離因素k2降低,管制上下限的距離因素k1 及每小時的期望成本會增加。當變異數位移增加時,樣本數n和抽樣間隔時間h 及管制上下限的距離因素k1降低,管制上下限的距離因素k2及每小時的期望成本 會增加。當韋伯比例參數λ1增加時,n、h及k1降低, k2及每小時的期望成本增加。 但是在平均數與變異數偏移量為(1,2)時, k1及每小時的期望成本降低,n、h及 k2增加。

English Abstract

In this thesis, we consider the joint economic–statistical design ‾X and R control charts which is based on the framework of the Costa and Chen et al. According to the cost model we assume that the quality characteristic are autocorrelated and the in–control time follows the Weibull distribution. There are four design parameters : the sample size n, sampling interval h and the control limit factors k1 and k2 are determined to design control charts ‾X and R, respectively. At present, most literatures research either the economic–statistical design in which the data is satisfying independent assumption or the control chart in which the data is satisfying autocorrelated. But there are a few literatures in researching of the combination of these two concepts. Consequently, we investigate these combined themes in this thesis. In this thesis, we use the grid search method by Monte Cario simulation to find the optimal design parameters to minimize the expected cost per hour. We also perform the sensitivity analysis to study the effects of autocorrelation, the amount of shift in mean and variance and the Weibull scale parameters. As the result, when the autocorrelation increases positively and then we would find that the sample size n and the sampling interval h increase, but control limit factors k1 and k2 decrease. The expected hourly cost increases by the autocorrelation either positively and nagetively increase. When the amount shift of mean increases, n, h and k2 decrease and k1 and the expected hourly cost increase. When the amount shift of variance increases, n, h and k1 decrease and k2 and the expected hourly cost increase. When 1 increase, n, h and k1 decrease and k2 and the expected hourly cost increase, but in the shift of the combination ( , )=(1,2), k1 decrease and n, h ,k2 and the expected hourly cost increase.

Topic Category 工學院 > 工業工程研究所
工程學 > 工程學總論
Reference
  1. LIST OF REFERENCES
    連結:
  2. [1] Alwan, L.C. and Roberts, H.V. (1988). Time-Series Modeling for Statistical
    連結:
  3. Process control. Journal of Business & Economuc Satisticals 6, 87–95.
    連結:
  4. [3] Banerjee, P.K. and Rahim, M.A. (1988). Economic design of ‾X control charts
    連結:
  5. under Weibull shock models. Technometrics 30, 407–414.
    連結:
  6. Design of ‾X and R Control Charts for Nonnormal Data. Working paper, Department
    連結:
  7. Reasearch 176, 986–998.
    連結:
  8. [6] Chen, Y.K. (2003). An evolutionary economic-statistical design for VSI ‾X control
    連結:
  9. non-normally correlated data. Internaional Journal of Production Research 39,
    連結:
  10. 1931–1941.
    連結:
  11. [9] Costa, A.F.B. (1993). Joint Econimic Design of ‾X and R Control Charts for
    連結:
  12. [10] Costa, A.F.B. (1994). ‾X charts with variable sample sizes. Journal of Quality
    連結:
  13. Technology 26, 155–163.
    連結:
  14. [11] Costa, A.F.B. (1997). ‾X charts with variable sample sizes and sampling intervals.
    連結:
  15. Journal of Quality Technology 29, 197–204.
    連結:
  16. [12] Costa, A.F.B. (1998). Joint ‾X and R charts with variable parameters. IIE Transactions
    連結:
  17. [13] Costa, A.F.B. (1999a). ‾X charts with variable parameters. Journal of Quality
    連結:
  18. [14] Costa, A.F.B. (1999b). Joint ‾X and R charts with variable sample sizes and
    連結:
  19. Current Control of a Process. Journal of the American Statistical Association,
    連結:
  20. [17] Gan, F.F. (1995). Joint monitoring of process mean and variance using exponentially
    連結:
  21. [18] Ho, C. and Case, K.E. (1994). Economic Design of Control Charts: A Literature
    連結:
  22. [19] Johoson, N.L. (1949). Systems of Frenquency Curves Generated by Methods of
    連結:
  23. Translation. Biometrika 36, 149–176.
    連結:
  24. [20] Jones, L.L. and K.E. Case (1981). Economic Design of a Joint ‾X and R Control
    連結:
  25. [21] Knoth, S. and Schmid, W. (2002). Monitoring the mean and variance of a stationary
    連結:
  26. process. Neerlandica 56, 77–100.
    連結:
  27. [22] Lin, H.T. (2006). The Statistical Design of the ‾X Control chart for ARTA
    連結:
  28. Christain University, Chung Li, Taiwan.
    連結:
  29. [23] Lorenzen, T.J. and Vance, L.C. (1986). The economic design of control charts:
    連結:
  30. a unified approach. Technometrics 28, 3–10.
    連結:
  31. [29] Park, C. and Reynolds, M.R., Jr. (1994). Economic design of a variable sample
    連結:
  32. [30] Pearson, E.S. and Hartly, H.O. (1942). The Probability Integral of the Range in
    連結:
  33. [31] Rahim, M.A. (1989). Determination of Optimal Design Parameters of Joint ‾X
    連結:
  34. 38, 2871–2889.
    連結:
  35. [33] Rendtel, U. (1990). CUSUM schemes with variable sampling intervals and sample
    連結:
  36. sizes. Statistical Papers 31, 103–118.
    連結:
  37. chart with variable sampling interval. Technometrics 30, 181–192.
    連結:
  38. interval ‾X Charts in the Presence of Correlation. Journal of Quality Technology
    連結:
  39. average control schemes with variable sampling intervals. Communications
    連結:
  40. in Statistics:Simulation and Computation 21, 627–657.
    連結:
  41. [39] Saniga, E.M. (1977). Joint Economic Design of ‾X and R Control Charts. Management
    連結:
  42. [40] Saniga, E.M. (1989). Economic Statistical of Control–Chart Designs with an
    連結:
  43. Research, January 2006.
    連結:
  44. of Special–Cause Control Charts for Correlated Processes. Technometrics 36, 3–
    連結:
  45. [43] Woodall, W.H. (1986). Weaknesses of the Economic Design of Control Charts.
    連結:
  46. Technometrics 28, 408–409.
    連結:
  47. [44] Yang, K. and Hancock, W.M. (1990). Statistical quality control for correlated
    連結:
  48. [45] Zhang, G. and Berardi, V. (1997). Economic statistical design of ‾X control charts
    連結:
  49. [2] Amin, R.W., W. Schmid and O. Frank (1998). The effects of autocorrelation on
  50. the R chart and the S2 chart. Sankhya ser. B 59, 229–255.
  51. [4] Chen, H. , Chang, K.W. and Pao Y.K.(2007). The Joint Economic–statistical
  52. of Industrial Engineering, Chung–Yun Christian University, Chung Li,
  53. Taiwan.
  54. [5] Chen, H. and Y. Cheng (2007). Non–normality effects on the economic–statistical
  55. design of ‾X charts withWeibull in–control time. European Journal of Operational
  56. charts under non-normality. International Journal of Advanced Manufacturing
  57. Technology 22, 602–610.
  58. [7] Chou C.Y., Chen C.H. and Liu, H.R. (2001). Economic design of ‾X charts for
  59. [8] Chou, C.Y., Wu, C.C. and Chen, C.H. (2006). Joint economic design of variable
  60. sampling intervals ‾X and R charts using genetic algorithms. Communications in
  61. Statistics:Simulation and Computation 35, 1027–1043.
  62. Process Subject to Two Independent Assignable Cause. IIE Transactions 25,
  63. 27–33.
  64. 30, 505–514.
  65. Technology 31, 408–416.
  66. sampling intervals. Journal of Quality Technology 31, 387–397.
  67. [15] Costa, A.F.B. and Rahim, M.A. (2000). Economic design of ‾X and R charts
  68. under Weibull shock models. Quality and Reliability Engineering Inetrnational
  69. 16, 143–156.
  70. [16] Duncan, A.J. (1956). The Economic Design of ‾X Charts Used to Mantain–
  71. 51, 228–242.
  72. weighted moving average control charts. Technometrics 37, 446–453.
  73. Review for 1981–1991. Journal of Quality Technology 26, 39–53.
  74. Charts. AIIE Transactions 13, 182–195.
  75. processes. Master Thesis, Department of Industrial Engineering, Chung-Yuan
  76. [24] Lu, C.W. and Reynolds, M.R..JR (1999). Control Charts for Monitoring the
  77. Mean and Variance of Autocorrelated Process. Journal of Quality Technology
  78. 31, 259–274.
  79. [25] Maragah, H.D. and Woodall, W.H. (1992). The effect of autocorrelation on the
  80. retrospective X chart. Journal of Statistical Computation and Simulation 40,
  81. 29–42.
  82. [26] McWilliams, T.P. (1989). Economic control chart designs and in–control time
  83. distribution: A sensitivity study. Journal of Quality Technology 21, 103–110.
  84. [27] McWilliams, T.P., E.M. Saniga, and D.J. Davis (2001). Economic–Statistical
  85. Design of ‾X and R or ‾X and S Charts. Journal of Quality Technology 33, 234–
  86. 241.
  87. [28] Montgomery, D.C. and C.M. Mastrangelo (1991). Some Statistical Process Control
  88. Methods for Autocorrelated Data;Discussions;Response. Journal of Quality
  89. Technology 23, 179–204.
  90. size ‾X chart. Communications in Statistics, Part B–Simulation and Computation
  91. 23, 467–483.
  92. Samples of n Observations from a Normal Population. Biometrika 32, 301–310.
  93. and R Charts. Journal of Quality Technology 21, 65–70.
  94. [32] Rahim, M.A. and A.F.B. Costa (2000). Joint Economic Design of ‾X and R
  95. Charts Under Weibull Shock Models. Internaional Journal of Production Research
  96. [34] Reynolds, M.R., Jr., Amin, R.W., Arnold, J.C. and Nachlas, J.A. (1988). ‾X
  97. [35] Reynolds, M.R., Jr., Amin, R.W. and Arnold, J.C. (1990). CUSUM charts with
  98. variable sampling interval. Technometrics 32, 371–384.
  99. [36] Reynolds, M.R., Jr., Arnold, J.C. and Baik, J.W. (1996). Variable sampling
  100. 28, 12–30.
  101. [37] Reynolds, M.R., Jr. and Arnold, J.C. (2001). EWMA control charts with variable
  102. sample sizes and variable sampling intervals. IIE Transactions 33, 511–530.
  103. [38] Saccucci, M.S., Amin, R.W. and Lucas, J.M. (1992). Exponential weighted moving
  104. Science 24, 420–431.
  105. Applicaction to ‾X and R Charts. Technometrics 31, 313–320.
  106. [41] Serel, D.A. and Moskowitzs, H. (2006). Joint economic design of EWMA control
  107. charts for mean and variance. Submitted to European Journal of Operational
  108. [42] Wardell, D.G., Moskowitzs, H. and Plante, R.D. (1994). Run Length Distribution
  109. 17.
  110. samples. International Journal of Production Research 28, 595–608.
  111. for systems withWeibull in–control times. Computers and Industrial Engineering
  112. 32, 575–586.