透過您的圖書館登入
IP:3.238.87.31
  • 學位論文

以離子熔液為模板製備中孔洞二氧化鈦(MTO) 1. MTO的製備及其性質之研究 2. MTO在染料敏化太陽能電池之應用研究

The Preparation and Application of Mesoporous TiO2(MTO) with Ionic Liquid as the Template: (1) Preparation and Characterization of MTO (2) Application of MTO on DSSC

指導教授 : 陳玉惠

摘要


第一部分、中孔性二氧化鈦的製備及其性質之研究 本研究成功的以溶膠凝膠法搭配[Pmim][BF4]、[Bmim][BF4]、[Omim][BF4]、[Mmbi][Cl]2與[Mbbi][Cl]2五種不同結構之離子熔液用為模板,分別製備出TP、TB、TO、TDM及TDB中孔洞二氧化鈦(MTO)。溶膠凝膠法進行時,離子熔液結構上的咪唑陽離子可進行π-π堆疊,此種堆疊的行為影響了二氧化鈦前驅物在溶膠凝膠法進行過程中的水解縮合時間,而且離子熔液結構上的咪唑陽離子尺寸的增加與陰離子與水分子之間氫鍵強度的提升,會有效的提高π-π堆疊作用力,因此,不同離子熔液的使用影響了所製備之TiO2的形態與性質。 本研究所製備MTO之結晶形態係藉由XRD,TEM與BET進行分析鑑定。結果顯示,當離子熔液的結構改變且使用添加量有所調整時,二氧化鈦的中孔洞結構、表面積、平均孔徑、蟲洞結構成型完整度與熱穩定性會隨之改變。此外,結果亦顯示,當二氧化鈦具有較完整的蟲洞結構或是同時具有銳鈦礦與板鈦礦的結晶結構時,可以在短時間內表現出比商用的P25二氧化鈦粉末還要優異的光觸媒效果。 第二部分、染料敏化太陽能電池之應用研究 適用於染料敏化太陽能電池(DSSC)的MTO必須具有純的銳鈦礦結構、適當的孔洞尺寸與高的比表面機,從第一部分的結果得知,TB及TO其二氧化鈦孔徑較大、鍛燒過後表面積較高且為銳鈦礦結構。因此本部份一開始先選擇了室溫下及具有銳鈦礦結構、450℃鍛燒過後表面積高於80 m2/g的MTO,TB3,為樣品,當作染料敏化太陽能電池的工作電極材料,進行效能測試。實驗結果顯示,經過450℃鍛燒後的TB3依然能夠維持中孔洞結構,此多孔的結構有助於染料吸附數量的提升,並幫助電解質傳遞。其次,將TB3與穩定性極佳的P25以不同比例混合在一起當做電極材料,並且探討對染料敏化太陽能電池的效能影響。結果得知,當TB3的添加比例提高時,染料敏化太陽能電池的輸出電流與電壓都有提高的現象。此現象藉由染料吸附量與電子生命周期的分析得到驗證。當工作電極材料全部都使用TB3時,其DSSC的光電轉化效率(η)可以超出以P25為主的DSSC之η值60%。 此外,第一部分所製備出的TB與TO系列二氧化鈦,也分別使用為工作電極材料加以比較。結果得知,二氧化鈦的孔徑在一定範圍內增加時,元件效能可逐漸提升。其中,TB1雖然不具有蟲洞結構,但其較大的孔徑搭配適當的結晶形態可使其製作之DSSC達最高的輸出電流與光電轉化效率。

並列摘要


Part 1. Preparation and Characterization of Mesoporous TiO2 In this part, the mesoporous titanium dioxide (MTO) series, TP, TB, TO, TDM and TDB were prepared by the sol-gel polymerization using the water miscible imidazolium ionic liquids, 1-propyl-3-methylimidazolium tetrafluoroborate ([Pmim][BF4]), 1-butyl-3-methylimidazolium tetrafluoroborate ([Bmim][BF4]), 1-octyl-3-methylimidazolium tetrafluoroborate ([Omim][BF4]), 1,1’-dimethyl-3,3’-methylene bisimidazolium dichloride ([Mmbi][Cl]2) and 1,1’-Dimethyl-3,3’-(1,4-tetramethylene) bisimidazoliumdichloride ([Mbbi][Cl]2) as the template, respectively. The imidazolium π-π stacking of the ionic liquids (ILs) in the titanium dioxide matrix was studied by FT-IR. It was found that the imidazolium π-π stacking interaction of IL was increased with decreasing the imidazolium cation chain length and enhancing the hydrogen bonding of the anion. The pore and crystalline structure of all the MTO samples prepared above have been studied in detail by X-ray diffraction (XRD), transmission electron microscopy (TEM) and Brunauer-Emmett-Teller (BET) measurements. It was also found that the mesoporous morphology, including surface area, average pore size, wormhole-like structure, and thermal stability of the as-prepared MTO particle were varied with the chemical structure and content of the IL used due to the different extent of imidazolium π-π stacking. In addition, it was also found that the titanium dioxide particles with better crystallinity and wormhole-like mesoporous structure as well as with anatase and brookite structure exhibited higher photodegradation efficiencies of methylene blue (MB) under 2 hour UV irradiation than the commercial product, P25. Part 2. Application of MTO on DSSC In this part, the mesoporous anatase TiO2, TB3, which was synthesized with [Bmim][BF4] is selected as the working electrode material for application on dye sensitized solar cell (DSSC).. The 450 C-calcined TB3 was found maintaining mesoporous structure with the morphology that benefits the dye adsorption and electrolyte diffusion. A series of dye-sensitized electrodes were prepared with a combination of the as-prepared TB3 and P25, a commercial TiO2. It was found that the short-circuit photocurrent (Jsc) and open-circuit photovoltage (Voc) of the TB3–containing electrodes were remarkably increased with increasing the content of TB3. The improvement was ascribed to increase of the amount of dye molecules adsorbed and prolongation of the electron lifetimes (τeff). The highest light-to-electricity conversion efficiency (η) of the dye-sensitized solar cell (DSSC) was obtained from that prepared with the pure TB3 electrode and was about 60% higher than that prepared with the pure P25 electrode under the same condition. In addition, the effect of the surface area and pore size of the IL-templated TiO2, TB and TO, prepared with 4-carbon alkyl and 8-carbon alkyl IL template, respectively, on the performance of DSSCs were also studied. It was found that both the η values of the DSSCs fabricated with TB and TO electrodes were increasing with increase of the pore size of the TiO2 samples and the highest η and Isc of DSSC were obtained from the one fabricated with TB1, which was synthesized with [Bmim][BF4] as the template with a [Bmim][BF4]/TTIP molar ratio of 1.

參考文獻


[2] 彭懷夫, 中孔性二氧化鈦薄膜於染料敏化太陽能電池之應用,2004年6月。
[49] 韓繼中,染敏太陽能電池用之高表面積二氧化鈦之製備及性質,2006年6月。
Part 2. 染料敏化太陽能電池之研究
[17] 韓繼中,中原大學化學系碩士論文,2006年6月。
[21] 王慧君, 以回應曲面法探討溶膠-凝膠法制被奈米二氧化矽之參數影響, 中原大學化工系, 2004年6月

被引用紀錄


李苑菁(2014)。利用靜電紡絲法製備高比表面積多層次二氧化鈦奈米管及其在染敏太陽能電池上之應用〔碩士論文,中原大學〕。華藝線上圖書館。https://doi.org/10.6840%2fcycu201400693
林鈺儐(2013)。靜電紡絲法製備不同形貌之高比表面積銳鈦礦相二氧化鈦奈米纖維及其在染料敏化太陽能電池的應用〔博士論文,中原大學〕。華藝線上圖書館。https://doi.org/10.6840%2fcycu201300805

延伸閱讀