Reference
|
-
1. Ahmed, M. A., Saliu, M. O., AIGhamdi, J., Adaptive fuzzy logic-based framework for software development effort prediction, Information and Software Technology, 47, pp. 31–48, 2005.
連結:
-
2. Akira, K., Suzuki, A., Takahama, Y., Prediction of coronal size of third molars by factor and multiple regression analyses, American Journal of Orthodontics and Dentofacial Orthopedics, 109(1), pp.79-85, 1996.
連結:
-
3. Akinbinu, V. A., Prediction of fracture gradient from formation pressures and depth using correlation and stepwise multiple regression techniques, Journal of Petroleum Science and Engineering, 72, pp.10–17, 2010.
連結:
-
4. Alvarez, G. M., Babuska, R., Fuzzy model for the prediction of unconfined compressive strength of rock samples, International Journal of Rock Mechanics and Mining Sciences, 36, pp. 339-349, 1999.
連結:
-
5. Benardos, P. G., Vosniak, G.. C., Prediction of surface roughness in CNC face milling using neural networks and Taguchi’s design of experiments, Robotics and Computer Integrated Manufacturing, 18, pp. 343–354, 2002.
連結:
-
6. Carman, K., Prediction of soil compaction under pneumatic tire a using fuzzy logic approach, Journal of Terramechanics , 45, pp. 103-108, 2008.
連結:
-
7. Casalino, G., Curcio, F., Memola Capece Minutolo, F., Investigation on Ti6Al4V laser welding using statistical and Taguchi approaches, Journal of Materials Processing Technology, 167, pp. 422–428, 2005.
連結:
-
8. Chen, J.C., Black, J.T., A fuzzy-nets in-process (FNIP) system for tool-breakage monitoring in end-milling operations, Int. J. Mach.Tool Manuf, 37 (6), pp. 783–800, 1997.
連結:
-
9. Chen, J.C., M.S. Lou, Fuzzy-nets based approach to using an accelerometer for an in-process surface roughness prediction system in milling operations, Int. J. Comput. Integr. Manuf, 13 (4), pp. 358–368, 2000.
連結:
-
10. Cliff, M. A., Dever, M. C., Hall, J. W., Girard, B., Development and evaluation of multiple regression models for prediction of sweet cherry liking, Journal of Fermentation and Bioengineering, 86(1), pp.141-143, 1996.
連結:
-
12. El-Sonbaty, I. A., Khashaba, U. A., Selmy, A. I., Ali, A. I., Prediction of surface roughness profiles for milled urfaces using an artificial neural network and ractal geometry approach, journal of materials processing technology, 200, pp. 271-278, 2008.
連結:
-
13. Fang, Y. C., Tzeng, Y. F., Li, S. X., A Taguchi PCA fuzzy-based approach for the multi-objective extended optimization of a miniature optical engine, journal of physics D: applied physics, J. Phys. D: Appl. Phys. 41(175108), pp. 1-16, 2008.
連結:
-
14. Gadoue, S. M., Giaouris, D., Finch, J. W., Artificial intelligence-based speed control of DTC induction motor drives—A comparative study, Electric Power Systems Research, 79, pp. 210–219, 2009.
連結:
-
15. Ghani, J. A., Choudhury, I. A., Hassan, H. H., Application of Taguchi method in the optimization of end milling parameters, Journal of Materials Processing Technology ,145, pp. 84–92, 2004.
連結:
-
16. Huang, B. P., A neural networks-based in-process adaptive surface roughness control (NN-IASRC) system in end-milling operations, Doctor of Philosophy, 2002.
連結:
-
17. Hong, S. P., Jung, E. S., Choe, J., Kim, J. H., Design of a Menu Structure for the Instrument Cluster IVIS using Taguchi Method, Proceedings of the International MultiConference of Engineers and Computer Scientisis 2010 Vol III, IMECS2010, Hong Kong, pp. 1-5, 2010.
連結:
-
18. Hossein, S., Najmeh D., Presented a fuzzy system to determine Barberry product quality based on average color spectra by image processing, Journal of King Saud University – Science, S1018-3647(10)00081-9, pp. 1-5, 2010.
連結:
-
21. Hsu, T. J., Lai, W. H.,Manufacturing Parts Optimization in the Three-Dimensional Printing Process by the Taguchi Method, Journal of the Chinese Institute of Engineers, 33(1), pp. 121-130, 2010.
連結:
-
22. Huang, B.P., Chen, J.C., An in-process neural network-based surface roughness prediction system using a dynamometer in end milling operations, Int. J. Adv. Manuf. Technol., 21, pp. 339–347, 2003.
連結:
-
23. Huang, B. P., Chen, J. C., Li, Y., Artificial-neural-networks-based surface roughness Pokayoke system for end-milling operations, Neurocomputing, 71, pp. 544-549, 2008.
連結:
-
24. Hwang, G. Y., Hwang, S. M., Lee, H. J., Kim, J. H., Hong, K. S., Lee, W. Y., Application of Taguchi Method to Robust Design of Acoustic Performance in IMT-2000 Mobile Phones, IEEE Transactions on Magnetics, 41(5), pp. 1900-1903 ,2005.
連結:
-
26. Jiao, Y., Lei, S., Pei, Z. J., Lee, E. S., Fuzzy adaptive networks in machining process modeling: surface roughness prediction for turning operations, International Journal of Machine Tools & Manufacture, 44, pp.1643–1651, 2004.
連結:
-
27. Joo, Y. K., Zhang, S. H., Yoon, J. H., Cho, T. Y., Optimization of the Adhesion Strength of Arc Ion Plating TiAlN Films by the Taguchi Method, Materials, 2, pp. 699-709, 2009.
連結:
-
28. Kim, M., Sohn, Y. J., Lee, W. Y., Kim, C. S., Fuzzy control based engine sizing optimization for a fuel cell/battery hybrid mini-bus, Journal of Power Sources, 178(2), pp. 706-710, 2008.
連結:
-
29. Lee, J., Um, K.,A comparison in a back-bead prediction of gas metal arc welding using multiple regression analysis and artificial neural network, Optics and Lasers in Engineering, 34, pp.149-158, 2000.
連結:
-
30. Lu, S. M., Li, Y. C. M., Tang, J. C., Optimum design of natural-circulation solar-water-heater by the Taguchi method, Energy, 28, pp. 741–750, 2003.
連結:
-
31. Wang, J., Qiao, C. D., Deng, B., Observer-based robust adaptive variable universe fuzzy control for chaotic system, Chaos, Solitons and Fractals, 23, pp.1013–1032, 2005.
連結:
-
32. Ozcelik ,B., Bayramoglu ,M, The statistical modeling of surface roughness in high-speed flat end milling, International Journal of Machine Tools & Manufacture , 46, pp. 1395–1402, 2006.
連結:
-
33. Qiu, Y., Fu, B., Wang, J., Chen, L., Meng, L., Zhang, Y., Spatial prediction of soil moisture content using multiple-linear regressions in a gully catchment of the Loess Plateau, Journal of Arid Environments, 74, pp. 208–220, 2010.
連結:
-
34. Saenz de Argandona, E., Aztiria, A., Carcia, C., Arana, N., Izaguirre, A., Fillatreau, P.,Forming processes control by means of artificial intelligence techniques, Robotics and Computer-Integrated Manufacturing, 24 , pp. 773–779, 2008.
連結:
-
35. Sinnakaudan, S. K., Ghani, A. Ab., Ahmad, M. S. S., Zakaria, N. A., Multiple Linear Regression Model for Total Bed Material Load Prediction, J. Hydr. Engrg. 132(5), pp.521-528, 2006.
連結:
-
36. Sohn, S. Y., Kim, H. S., Random effects logistic regression model for default prediction of technology credit guarantee fund, European Journal of Operational Research, 183, pp. 472–478, 2007.
連結:
-
37. Tortum, A., Yayla, N., Celik, C., Gokdag, M., The investigation of model selection criteria in artificial neural networks by the Taguchi method, Physica A 386, pp. 446–468, 2007.
連結:
-
38. Tsao, C. C., Hocheng, H., Evaluation of thrust force and surface roughness in drilling composite material using Taguchi analysis and neural network , journal of materials processing technology, 203, pp. 342–348, 2008.
連結:
-
39. Tseng, F. M., Hu, Y. C., Comparing four bankruptcy prediction models: Logit, quadratic interval logit, neural and fuzzy neural networks, Expert Systems with Applications, 37, pp. 1846–1853, 2010.
連結:
-
40. Tzeng, Y. F., Chen, F. C., Multi-objective optimisation of high-speed electrical discharge machining process using a Taguchi fuzzy-based approach, Materials and Design, 28, pp. 1159–1168, 2007.
連結:
-
41. Wang, Y. M., Luo, Y., Hua, Z., On the extent analysis method for fuzzy AHP and its applications, European Journal of Operational Research, 186(2), pp. 735-747, 2008.
連結:
-
42. Wu, D. H., Chang, M. S., Use of Taguchi method to develop a robust design for themagnesium alloy die casting process, Materials Science and Engineering, A 379, pp. 366–371, 2004.
連結:
-
43. Wong, C. C., Wang, H. Y., Li, S. A., Cheng, C. T., Fuzzy Controller Designed by GA for Two-wheeled Mobile Robots, International Journal of Fuzzy Systems, 9(1), 2007.
連結:
-
44. Xue, Y., Kim, I. S., Son, J. S., Park, C. E., Kim, H. H., Sung, B.S., Kim, I. J., Kim, H. J., Kang, B. Y., Fuzzy regression method for prediction and control the bead width in the robotic arc-welding process, Journal of Materials Processing Technology, 164–165, pp. 1134–1139, 2005.
連結:
-
45. Yilmaz, N. G., Yurdakul, M., Goktan, R. M., Prediction of radial bit cutting force in high-strength rocks using multiple linear regression analysis, International Journal of Rock Mechanics & Mining Sciences, 44, pp.962–970, 2007.
連結:
-
46. Zain, M. F. M., Abd, S. M.,Multiple Regression Model for Compressive Strength Prediction of High Performance Concrete, Journal of Applied Sciences, 9(1), pp. 155-160, 2009.
連結:
-
47. Zadeh, L. A., Fuzzy sets, Inform. Contorl, 8, pp. 338-353, 1965.
連結:
-
53. 黃乾怡、林宜鋒、紀勝財、蘇顏衍,田口方法應用於無鉛迴銲製程參數優化,科學與工程技術期刊,第三卷,第二期,2007。
連結:
-
57. 譚墨群,「應用模糊理論於門檻型GARCH模式之建構與預測」,大同大學應用數學研究所碩士論文,2009。
連結:
-
11. Degormo E.P. , Black, JT., Kohser R. A., Materials and processes in manufacturing 10th, Wiley, 2008.
-
19. Hsiang, S. H., Lin, Y. W., Optimization of the Extrusion Process for Magnesium Alloy Sheets Using the Fuzzy Bsed Taguchi Method, The Arabian Journal for Science and Engineering, 34, pp. 1-11,2009.
-
20. Hsiang, S. H.,Optimization of the Extrusion Process for Magnesium Alloy Sheets Using the Fuzzybased Taguchi Method, The Arabian Journal for Science and Engineering, 34(1C), pp. 175-185, 2009.
-
25. Jahanshahi, M., Najafpour, G., Rahimnejad, M., Applying the Taguchi method for optimized fabrication of bovine serum albumin (BSA) nanoparticles as drug delivery vehicles, African Journal of Biotechnology, 7(4), pp. 362-367, 2008.
-
48. 林俊良,智慧型控制 : 分析與設計,全華科技圖書公司,台灣台北,2008。
-
49. 孫宗瀛,楊英魁,Fuzzy控制:理論、實作與應用,全華科技圖書公司,台灣台北,2005。
-
50. 陳至安等譯,應用線性迴歸模型,華泰出版,台灣台北,2005。
-
51. 陳順宇、鄭碧娥,統計學,華泰出版,台灣台北,2004。
-
52. 黃信銘,機械加工法多重品質特性最佳化製程參數研究,國立高雄第一科技大學機械與自動化工程系碩士論文,2005。
-
54. 楊英魁,FUZZY控制,中國生產力中心技術引進服務,台灣台北,1993。
-
55. 劉濱達,「灰模型最佳化研究與灰預測模糊控制器之實現」,國立成功大學電機工程學系博士論文,2004。
-
56. 謝坤龍,「台灣公債殖利率預測模型之建構-調適性網路模糊推論系統與灰預測之應用」,東吳大學經濟學系碩士論文,2006。
-
58. 蘇朝墩,品質工程,中華民國品質學會,台灣台北,2004。
|