Title

結合廻歸模糊與田口方法發展表面粗糙度預測系統之研究

Translated Titles

A Study of Surface Roughness Prediction System using Fuzzy Regression and Taguchi Method

DOI

10.6840/CYCU.2010.00465

Authors

呂朋樺

Key Words

模糊理論 ; 表面粗糙度 ; 田口法 ; 迴歸分析 ; Regression Analysis ; Surface Roughness ; Fuzzy Theory ; Taguchi Method

PublicationName

中原大學工業與系統工程研究所學位論文

Volume or Term/Year and Month of Publication

2010年

Academic Degree Category

碩士

Advisor

黃博滄

Content Language

繁體中文

Chinese Abstract

智慧型控制理論在現代被廣泛的研究與應用在各領域中,且在各領域中都有令人激賞的表現,但隨著科技日新月異的進步,現今智慧型控制系統越趨複雜及目標難以精確化的問題就此產生,此時模糊理論的誕生解決了此相關方面的問題。 由於模糊理論擁有能夠處理複雜與目標難以精確化的特性,現今己活躍在各種領域當中,但是在建置模糊系統的過程中將會遇到兩個主要的困難點,第一點為定義模糊IF-THEN規則庫中適當歸屬函數;第二點為找尋最佳的模糊歸屬函數個數組合,這兩點是在模糊系統建置過程中一定會遇到的困難,故本研究將針對模糊建置上會遇到的兩個主要困難做有效及正確的改善,運用迴歸分析建立廻歸模組來輔助定義出模糊IF-TEHN規則庫,與田口法優化模糊歸屬函數個數,找出最佳歸屬函數個數組合,並且將兩者結合於模糊預測系統中,建置一套更有效且更準確的模糊預測系統。 為證明本研究所提出之方法的有效性與準確性,將所發展之結合迴歸模糊與田口法導入至表面粗糙度預測的實例中,建置出表面粗糙度預測系統,證明出此預測系統能有效且準確的預測出表面粗糙度,並且提升了原模糊系統的準確性。最後運用迴歸分析做表面粗糙度的預測,來驗證出結合迴歸模糊與田口法所發展的預測系統比迴歸預測方法還具有效性及準確性。

English Abstract

Intelligent control theory has been studied in modern research and widely applied in various fields. With the rapid technological advances, however, intelligent control system becomes more complex and is difficult for researchers to define accurately. As a result, fuzzy theory is proposed to solve problems in the relevant areas. Although the fuzzy theory can be used to solve complex issues and make accurate definitions, two main issues occur in the process of the building fuzzy systems including defining appropriate membership functions in the fuzzy IF- THEN rule bank and searching the best combined number pairs in the fuzzy membership functions. In order to handle these two issues, the current study adopted regression analysis to define the fuzzy IF-TEHN rule bank, and membership functions of Taguchi Method to search the best combined number pairs in the fuzzy system. Then the two are combined to build an effective and accurate fuzzy prediction system. The fuzzy prediction system proposed in the study was used to predict surface roughness for verifying its effectiveness and accuracy. The method composed of fuzzy regression and Taguchi Method was developed, and was proved to accurately predict surface roughness and improve predictions of the original fuzzy system. Finally, the study testified that the method composed of fuzzy regression and Taguchi Method has a better and more accurate prediction compared to regression analysis.

Topic Category 電機資訊學院 > 工業與系統工程研究所
工程學 > 工程學總論
Reference
  1. 1. Ahmed, M. A., Saliu, M. O., AIGhamdi, J., Adaptive fuzzy logic-based framework for software development effort prediction, Information and Software Technology, 47, pp. 31–48, 2005.
    連結:
  2. 2. Akira, K., Suzuki, A., Takahama, Y., Prediction of coronal size of third molars by factor and multiple regression analyses, American Journal of Orthodontics and Dentofacial Orthopedics, 109(1), pp.79-85, 1996.
    連結:
  3. 3. Akinbinu, V. A., Prediction of fracture gradient from formation pressures and depth using correlation and stepwise multiple regression techniques, Journal of Petroleum Science and Engineering, 72, pp.10–17, 2010.
    連結:
  4. 4. Alvarez, G. M., Babuska, R., Fuzzy model for the prediction of unconfined compressive strength of rock samples, International Journal of Rock Mechanics and Mining Sciences, 36, pp. 339-349, 1999.
    連結:
  5. 5. Benardos, P. G., Vosniak, G.. C., Prediction of surface roughness in CNC face milling using neural networks and Taguchi’s design of experiments, Robotics and Computer Integrated Manufacturing, 18, pp. 343–354, 2002.
    連結:
  6. 6. Carman, K., Prediction of soil compaction under pneumatic tire a using fuzzy logic approach, Journal of Terramechanics , 45, pp. 103-108, 2008.
    連結:
  7. 7. Casalino, G., Curcio, F., Memola Capece Minutolo, F., Investigation on Ti6Al4V laser welding using statistical and Taguchi approaches, Journal of Materials Processing Technology, 167, pp. 422–428, 2005.
    連結:
  8. 8. Chen, J.C., Black, J.T., A fuzzy-nets in-process (FNIP) system for tool-breakage monitoring in end-milling operations, Int. J. Mach.Tool Manuf, 37 (6), pp. 783–800, 1997.
    連結:
  9. 9. Chen, J.C., M.S. Lou, Fuzzy-nets based approach to using an accelerometer for an in-process surface roughness prediction system in milling operations, Int. J. Comput. Integr. Manuf, 13 (4), pp. 358–368, 2000.
    連結:
  10. 10. Cliff, M. A., Dever, M. C., Hall, J. W., Girard, B., Development and evaluation of multiple regression models for prediction of sweet cherry liking, Journal of Fermentation and Bioengineering, 86(1), pp.141-143, 1996.
    連結:
  11. 12. El-Sonbaty, I. A., Khashaba, U. A., Selmy, A. I., Ali, A. I., Prediction of surface roughness profiles for milled urfaces using an artificial neural network and ractal geometry approach, journal of materials processing technology, 200, pp. 271-278, 2008.
    連結:
  12. 13. Fang, Y. C., Tzeng, Y. F., Li, S. X., A Taguchi PCA fuzzy-based approach for the multi-objective extended optimization of a miniature optical engine, journal of physics D: applied physics, J. Phys. D: Appl. Phys. 41(175108), pp. 1-16, 2008.
    連結:
  13. 14. Gadoue, S. M., Giaouris, D., Finch, J. W., Artificial intelligence-based speed control of DTC induction motor drives—A comparative study, Electric Power Systems Research, 79, pp. 210–219, 2009.
    連結:
  14. 15. Ghani, J. A., Choudhury, I. A., Hassan, H. H., Application of Taguchi method in the optimization of end milling parameters, Journal of Materials Processing Technology ,145, pp. 84–92, 2004.
    連結:
  15. 16. Huang, B. P., A neural networks-based in-process adaptive surface roughness control (NN-IASRC) system in end-milling operations, Doctor of Philosophy, 2002.
    連結:
  16. 17. Hong, S. P., Jung, E. S., Choe, J., Kim, J. H., Design of a Menu Structure for the Instrument Cluster IVIS using Taguchi Method, Proceedings of the International MultiConference of Engineers and Computer Scientisis 2010 Vol III, IMECS2010, Hong Kong, pp. 1-5, 2010.
    連結:
  17. 18. Hossein, S., Najmeh D., Presented a fuzzy system to determine Barberry product quality based on average color spectra by image processing, Journal of King Saud University – Science, S1018-3647(10)00081-9, pp. 1-5, 2010.
    連結:
  18. 21. Hsu, T. J., Lai, W. H.,Manufacturing Parts Optimization in the Three-Dimensional Printing Process by the Taguchi Method, Journal of the Chinese Institute of Engineers, 33(1), pp. 121-130, 2010.
    連結:
  19. 22. Huang, B.P., Chen, J.C., An in-process neural network-based surface roughness prediction system using a dynamometer in end milling operations, Int. J. Adv. Manuf. Technol., 21, pp. 339–347, 2003.
    連結:
  20. 23. Huang, B. P., Chen, J. C., Li, Y., Artificial-neural-networks-based surface roughness Pokayoke system for end-milling operations, Neurocomputing, 71, pp. 544-549, 2008.
    連結:
  21. 24. Hwang, G. Y., Hwang, S. M., Lee, H. J., Kim, J. H., Hong, K. S., Lee, W. Y., Application of Taguchi Method to Robust Design of Acoustic Performance in IMT-2000 Mobile Phones, IEEE Transactions on Magnetics, 41(5), pp. 1900-1903 ,2005.
    連結:
  22. 26. Jiao, Y., Lei, S., Pei, Z. J., Lee, E. S., Fuzzy adaptive networks in machining process modeling: surface roughness prediction for turning operations, International Journal of Machine Tools & Manufacture, 44, pp.1643–1651, 2004.
    連結:
  23. 27. Joo, Y. K., Zhang, S. H., Yoon, J. H., Cho, T. Y., Optimization of the Adhesion Strength of Arc Ion Plating TiAlN Films by the Taguchi Method, Materials, 2, pp. 699-709, 2009.
    連結:
  24. 28. Kim, M., Sohn, Y. J., Lee, W. Y., Kim, C. S., Fuzzy control based engine sizing optimization for a fuel cell/battery hybrid mini-bus, Journal of Power Sources, 178(2), pp. 706-710, 2008.
    連結:
  25. 29. Lee, J., Um, K.,A comparison in a back-bead prediction of gas metal arc welding using multiple regression analysis and artificial neural network, Optics and Lasers in Engineering, 34, pp.149-158, 2000.
    連結:
  26. 30. Lu, S. M., Li, Y. C. M., Tang, J. C., Optimum design of natural-circulation solar-water-heater by the Taguchi method, Energy, 28, pp. 741–750, 2003.
    連結:
  27. 31. Wang, J., Qiao, C. D., Deng, B., Observer-based robust adaptive variable universe fuzzy control for chaotic system, Chaos, Solitons and Fractals, 23, pp.1013–1032, 2005.
    連結:
  28. 32. Ozcelik ,B., Bayramoglu ,M, The statistical modeling of surface roughness in high-speed flat end milling, International Journal of Machine Tools & Manufacture , 46, pp. 1395–1402, 2006.
    連結:
  29. 33. Qiu, Y., Fu, B., Wang, J., Chen, L., Meng, L., Zhang, Y., Spatial prediction of soil moisture content using multiple-linear regressions in a gully catchment of the Loess Plateau, Journal of Arid Environments, 74, pp. 208–220, 2010.
    連結:
  30. 34. Saenz de Argandona, E., Aztiria, A., Carcia, C., Arana, N., Izaguirre, A., Fillatreau, P.,Forming processes control by means of artificial intelligence techniques, Robotics and Computer-Integrated Manufacturing, 24 , pp. 773–779, 2008.
    連結:
  31. 35. Sinnakaudan, S. K., Ghani, A. Ab., Ahmad, M. S. S., Zakaria, N. A., Multiple Linear Regression Model for Total Bed Material Load Prediction, J. Hydr. Engrg. 132(5), pp.521-528, 2006.
    連結:
  32. 36. Sohn, S. Y., Kim, H. S., Random effects logistic regression model for default prediction of technology credit guarantee fund, European Journal of Operational Research, 183, pp. 472–478, 2007.
    連結:
  33. 37. Tortum, A., Yayla, N., Celik, C., Gokdag, M., The investigation of model selection criteria in artificial neural networks by the Taguchi method, Physica A 386, pp. 446–468, 2007.
    連結:
  34. 38. Tsao, C. C., Hocheng, H., Evaluation of thrust force and surface roughness in drilling composite material using Taguchi analysis and neural network , journal of materials processing technology, 203, pp. 342–348, 2008.
    連結:
  35. 39. Tseng, F. M., Hu, Y. C., Comparing four bankruptcy prediction models: Logit, quadratic interval logit, neural and fuzzy neural networks, Expert Systems with Applications, 37, pp. 1846–1853, 2010.
    連結:
  36. 40. Tzeng, Y. F., Chen, F. C., Multi-objective optimisation of high-speed electrical discharge machining process using a Taguchi fuzzy-based approach, Materials and Design, 28, pp. 1159–1168, 2007.
    連結:
  37. 41. Wang, Y. M., Luo, Y., Hua, Z., On the extent analysis method for fuzzy AHP and its applications, European Journal of Operational Research, 186(2), pp. 735-747, 2008.
    連結:
  38. 42. Wu, D. H., Chang, M. S., Use of Taguchi method to develop a robust design for themagnesium alloy die casting process, Materials Science and Engineering, A 379, pp. 366–371, 2004.
    連結:
  39. 43. Wong, C. C., Wang, H. Y., Li, S. A., Cheng, C. T., Fuzzy Controller Designed by GA for Two-wheeled Mobile Robots, International Journal of Fuzzy Systems, 9(1), 2007.
    連結:
  40. 44. Xue, Y., Kim, I. S., Son, J. S., Park, C. E., Kim, H. H., Sung, B.S., Kim, I. J., Kim, H. J., Kang, B. Y., Fuzzy regression method for prediction and control the bead width in the robotic arc-welding process, Journal of Materials Processing Technology, 164–165, pp. 1134–1139, 2005.
    連結:
  41. 45. Yilmaz, N. G., Yurdakul, M., Goktan, R. M., Prediction of radial bit cutting force in high-strength rocks using multiple linear regression analysis, International Journal of Rock Mechanics & Mining Sciences, 44, pp.962–970, 2007.
    連結:
  42. 46. Zain, M. F. M., Abd, S. M.,Multiple Regression Model for Compressive Strength Prediction of High Performance Concrete, Journal of Applied Sciences, 9(1), pp. 155-160, 2009.
    連結:
  43. 47. Zadeh, L. A., Fuzzy sets, Inform. Contorl, 8, pp. 338-353, 1965.
    連結:
  44. 53. 黃乾怡、林宜鋒、紀勝財、蘇顏衍,田口方法應用於無鉛迴銲製程參數優化,科學與工程技術期刊,第三卷,第二期,2007。
    連結:
  45. 57. 譚墨群,「應用模糊理論於門檻型GARCH模式之建構與預測」,大同大學應用數學研究所碩士論文,2009。
    連結:
  46. 11. Degormo E.P. , Black, JT., Kohser R. A., Materials and processes in manufacturing 10th, Wiley, 2008.
  47. 19. Hsiang, S. H., Lin, Y. W., Optimization of the Extrusion Process for Magnesium Alloy Sheets Using the Fuzzy Bsed Taguchi Method, The Arabian Journal for Science and Engineering, 34, pp. 1-11,2009.
  48. 20. Hsiang, S. H.,Optimization of the Extrusion Process for Magnesium Alloy Sheets Using the Fuzzybased Taguchi Method, The Arabian Journal for Science and Engineering, 34(1C), pp. 175-185, 2009.
  49. 25. Jahanshahi, M., Najafpour, G., Rahimnejad, M., Applying the Taguchi method for optimized fabrication of bovine serum albumin (BSA) nanoparticles as drug delivery vehicles, African Journal of Biotechnology, 7(4), pp. 362-367, 2008.
  50. 48. 林俊良,智慧型控制 : 分析與設計,全華科技圖書公司,台灣台北,2008。
  51. 49. 孫宗瀛,楊英魁,Fuzzy控制:理論、實作與應用,全華科技圖書公司,台灣台北,2005。
  52. 50. 陳至安等譯,應用線性迴歸模型,華泰出版,台灣台北,2005。
  53. 51. 陳順宇、鄭碧娥,統計學,華泰出版,台灣台北,2004。
  54. 52. 黃信銘,機械加工法多重品質特性最佳化製程參數研究,國立高雄第一科技大學機械與自動化工程系碩士論文,2005。
  55. 54. 楊英魁,FUZZY控制,中國生產力中心技術引進服務,台灣台北,1993。
  56. 55. 劉濱達,「灰模型最佳化研究與灰預測模糊控制器之實現」,國立成功大學電機工程學系博士論文,2004。
  57. 56. 謝坤龍,「台灣公債殖利率預測模型之建構-調適性網路模糊推論系統與灰預測之應用」,東吳大學經濟學系碩士論文,2006。
  58. 58. 蘇朝墩,品質工程,中華民國品質學會,台灣台北,2004。
Times Cited
  1. 陳久弘(2012)。運用灰關聯因子分析與類神經網路於銑削表面粗糙度即時預測系統。中原大學工業工程研究所學位論文。2012。1-75。 
  2. 吳士昌(2011)。資料探勘輔助類神經演算法發展表面粗糙度預測系統之研究。中原大學工業與系統工程研究所學位論文。2011。1-86。
  3. 張黃傑(2012)。平面銑削之灰色即時可調式學習表面粗糙度預測系統開發。中原大學工業與系統工程研究所學位論文。2012。1-82。