Title

靜壓止推軸承之圓形工作台頻譜特徵及動態參數探討

Translated Titles

Investigations in Frequency Spectrum Feature and Dynamic Parameters of Circular Worktable Mounting on the Hydrostatic Thrust Bearings

Authors

陳德洋

Key Words

靜壓止推軸承 ; 頻譜特徵 ; 動態參數 ; 過阻尼特性 ; hydrostatic thrust Bearings ; frequency spectrum feature ; dynamic parameters ; over-damping characteristics.

PublicationName

中原大學機械工程研究所學位論文

Volume or Term/Year and Month of Publication

2016年

Academic Degree Category

碩士

Advisor

康 淵;張永鵬

Content Language

繁體中文

Chinese Abstract

本文研究探討靜壓止推軸承之圓形工作台頻譜特徵及動態參數,探討圓形靜壓工作台使用壓力補償裝置的動態特性,對工作台施加簡諧力產生激振響應,並透過與振動原理比對,求得油膜的過阻尼特性。

English Abstract

This paper studies the frequency spectrum feature and dynamic parameters of circular worktable mounting on the hydrostatic thrust Bearings, Investigations circular of the hydrostatic worktable mounting using the dynamic characteristic compensation means for applying worktable in response to harmonic excitation force generation, and through vibration the principle of alignment, obtained through the damping characteristics of the oil film.

Topic Category 工學院 > 機械工程研究所
工程學 > 機械工程
Reference
  1. [1] Malanoski, S. B. and Loeb, A. M., “ The Effect of the Method Compensation on Hydrostatic Bearing Stiffness, ” Transaction of the ASME, Journal of Basic Engineering, Vol. 83, No. 2, pp. 179-187, 1961.
    連結:
  2. [4] Rowe, W.B., Hydrostatic and Hybrid Bearing Design, Butterworths, London , 1983.
    連結:
  3. [5] Wang, C. and Cusano, C., “ Dynamic Characteristics of Externally Pressurized, Double-Pad, Circular Thrust Bearings with Membrane Restrictors, ” Transactions of the ASME, Journal of Tribology, Vol. 113, 1991.
    連結:
  4. [9] Bassani, R., “Hydrostatic systems supplied through flow dividers, ” Tribology International Vol. 34, pp. 25-38, 2001.
    連結:
  5. [11] Wang, D., “ Hydrostatic Slideway and Its Design Research, ” Lubrication Engineering, No. 4, pp. 114-118, 2004.
    連結:
  6. [13] Chen, C.H., Chu, C.H., Kang, Y., Huang, Y.N., Teng, J.T., “ The restrictive effects of orifice compensation on the stability of the Jeffcott rotor-hybrid bearing system, ” Industrial Lubrication and Tribology, Vol. 54, No. 6, pp. 255-261, 2002.
    連結:
  7. [14] Chen, C.H., Kang, Y., Huang, Y.N., Chu, C.H., Teng, J.T., “ The estrictive effects of capillary compensation on the stability of the Jeffcott rotor-hybrid bearing system, ” Tribology International, Vol. 35, No. 12, pp. 849-855, 2002.
    連結:
  8. [15] Chen, C.H., Kang, Y., Huang, C.C., “ The influences of orifice restriction and journal eccentricity on the stability of the rigid rotor-hybrid bearing system, ” Tribology International, Vol. 37, No. 3, pp. 227-234, 2004.
    連結:
  9. [16] Chen, C.H., Kang, Y., Chang, Y.P., Lee, H.H., Shen, P.C., “ Influences of recess depth on the stability of the Jeffcott rotor supported by hybrid bearings with orifice restrictors, ” Industrial Lubrication and Tribology, Vol. 57, No. 1, pp. 41-51, 2005.
    連結:
  10. [17] Chen, C.H., Kang, Y., Chang, Y.P., Wang, Y.P., Lee, H.H., “ Influence of restrictor on stability of the rigid rotor-hybrid bearing system, ” Journal of Sound and Vibration, Vol. 297, No. 3-5, pp. 635-648, 2006.
    連結:
  11. [18] Chen, C.H., Chang, Y.P., Lee, H.H., Wang, Y.P., Kang, Y., “ The influences of capillary restriction and journal eccentricity on the stability of the rigid rotor-hybrid bearing system, ” Industrial Lubrication and Tribology, Vol. 59, No. 1, pp. 46-51, 2007.
    連結:
  12. [19] Kang, Y., Shen, P.C., Chen, C.H., Chang, Y.P., Lee, H.H., “ Modified determination of fluid resistance for membrane-type restrictors, ” Industrial Lubrication and Tribology, Vol. 59, No. 3, pp. 123-131, 2007.
    連結:
  13. [20] Kang, Y., Shen, P.C., Chang, Y.P., Lee, H.H., Chiang, C.P., “ Modified predictions of restriction coefficient and flow resistance for membrane-type restrictors in hydrostatic bearing by using regression, ” Tribology International, Vol. 40, No. 9, pp. 1369-1380, 2007.
    連結:
  14. [21] Chen, G.H., Kang, Y., Chang, Y.P., Peng, D.X., Yang, D.W., “ Influences of recess geometry and restrictor dimension on flow patterns and pressure distribution of hydrostatic bearings, ” Proceedings of the ASME Turbo Expo, 5, pp. 1045-1053, 2007.
    連結:
  15. [22] Tsai, T.H., Chen, C.H., Kang, Y., Chang, Y.P., “ Numerical simulations via navier-stokes equation for estimating effects of recess geometry, restrictor dimension and surface speed on static characteristics of hybrid bearing, ” Chung Cheng Ling Hsueh Pao/Journal of Chung Cheng Institute of Technology, Vol.38, No 1, pp. 85-96, 2009.
    連結:
  16. [23] Kang, Y., Lee, J.L., Huang, H.C., Lin, C.Y., Lee, H.H., and Peng, D.X., “ Design for static stiffness of hydrostatic plain bearings: constant compensations, ” Industrial Lubrication and Tribology, 2009.
    連結:
  17. [24] Kang, Y., Chen, C.H., Lee, J.L., Chen, J.H., Chang, Y.P., “ Foresight in static stiffness of hydrostatic bearings with various compensations by film gradient versus recess pressure, ” Industrial Lubrication and Tribology, Vol. 62, No 5, pp. 304-319, 2010.
    連結:
  18. [25] Kang, Y., Chen, C.H., Lee, H.H., Hung, Y.-H., Hsiao, S.T., “ Design for static stiffness of hydrostatic bearings: Single-action variable compensations, ” Industrial Lubrication and Tribology, Vol. 63, No. 2, pp. 103-118, 2011.
    連結:
  19. [26] Kang, Y., Lee, J.L., Huang, H.C., Lin, C.Y., Lee, H.-H., Peng, D.X., Huang, C.-C., “ Design for static stiffness of hydrostatic plain bearings: Constant compensations, ” Industrial Lubrication and Tribology, Vol. 63, No. 3, pp. 178-191, 2011.
    連結:
  20. [27] Kang, Y., Chen, C.H., Chen, Y.C., Chang, C., Hsiao, S.T., “ Parameter identification for single-action membrane-type restrictors of hydrostatic bearings, ” Industrial Lubrication and Tribology, Vol. 64, No. 1, pp. 39-53, 2012.
    連結:
  21. [28] Weng, H.C., Kang, Y., “ Influence of nanoparticles in lubricants on the load capacity of hydrostatic thrust bearings, ” Advanced Materials Research, Vol. 486, pp. 99-103, 2012.
    連結:
  22. [29] Kang, Y., Hu, S. Y., Chou, H. C., Lee, H. H., “ Dynamic characteristics of the DSI-Type constant-flow valves, ” Journal of Advanced Mechanical Design, Systems and Manufacturing, Vol. 6, No. 4, pp. 456-463, 2012.
    連結:
  23. [30] Kang, Y., Chou, H.C., Wang, Y.P., Chen, C.H., Weng, H.C., “ Dynamic behaviors of a circular worktable mounted on closed-type hydrostatic thrust bearing compensated by constant compensations, ” Journal of Mechanics, Vol. 29, No. 2, pp. 297-308, 2013.
    連結:
  24. [32] Kang, Y., Peng, D. X., Lee, H. H., Hu, S. Y., Chang, Y. P., “ Investigations of constant-flow valves for hydrostatic bearings, ” Industrial Lubrication and Tribology, Vol. 65, No. 6, pp. 379-389, 2013.
    連結:
  25. [33] Hsiao, S.T., Kang, Y., Jong, S.M., Lee, H.H., Peng, D.-X., Chang, Y.P., “ Static analysis of hydrostatic conical bearings using flow resistance network method, ” Industrial Lubrication and Tribology, Vol. 66, No. 3, pp. 411-423, 2014.
    連結:
  26. [34] Kang, Y., Yang, D.W., Hu, S.Y., Hung, Y.H., Peng, D.X., Chen, S.K., “ Design for static stiffness of hydrostatic bearings: Double-action variable compensation of spool-type restrictors, ” Industrial Lubrication and Tribology, Vol. 66, No. 1, pp. 83-99, 2014.
    連結:
  27. [35] Kang, Y., Peng, D.X., Hung, Y.H., Hu, S.Y., Lin, C.S., “ Design for static stiffness of hydrostatic bearings: Double-action variable compensation of membrane-type restrictors and self-compensation, ” Industrial Lubrication and Tribology, Vol. 66, No. 2, pp. 322-334, 2014.
    連結:
  28. [40] Cusano, C. “Characteristics of Externally Pressurized Journal Bearings with Membrane Type Variable Flow Restrictor as Compensating Element,” IMechE,No.188, pp.36-527, 1974.
    連結:
  29. [42] Ghosh M. K. and Majamdar B. C., “Dynamic stiffness and damping characteristics of compensated hydrostatic thrust bearing,” Journal of Lubrication Technology, Transactions of ASME, Vol. 104, No. 4, pp.491-496 , 1982.
    連結:
  30. [43] Sinhasan R., Jain S. C. and Sharma S. C., “A comparative study of flexible thrust pad hydrostatic bearing with different restrictors,” Wear, Vol. 121, No.1, pp 53-70 , 1988.
    連結:
  31. [44] Osman T. A., Safar Z. S. and Mokhtar M.O.A,. “Design of annular recess hydrostatic thrust bearing under dynamic loading,” Tribology International, Volume 24, No. 3, pp. 137-141, 1991.
    連結:
  32. [46] Wasson, K. L., Slocum, A. H., “Integrated shaft self-compensating hydrostatic bearing,” US Patent 5,700,092 (23 December 1997)
    連結:
  33. [48] O’Donoghue, J.P. and Rowe, W.B., “Hydrostatic journal bearings”, Tribology, Vol. 1, pp. 230-236, 1968.
    連結:
  34. [49] Davis, P.B., “A general analysis of multi-recess hydrostatic journal bearings, ” Proc. Instn Mech Engineers Part I, Vol. 184(43), pp. 827-838, 1969-1970.
    連結:
  35. [50] Aston, R.L. and O’Donoghue, J.P., “The effect of the number of recesses on the performance of externally pressurized multi-recess journal bearings, ” Tribology, Vol. 4, pp. 94-96, 1971.
    連結:
  36. [53] Yang D. W., Chen C. H., Kang Y., Hwang R. M. and Shyr S. S., “Influence of orifices on stability of rotor-aerostatic bearing system”, Tribology International,Vol. 42, No. 8, pp. 1206-1219, 2009.
    連結:
  37. [54] Chen, C.-H., Kang, Y., and Huang, C.-C, "The influence of Orifice Restriction and Journal Centricity on the Stability of the Rigid Rotor-Hybrid Bearing System," Tribology International, 37(3), pp.227-234, 2004.
    連結:
  38. [56] Pinkus, O. and Sternlicht, B., Theory of Hydrodynamic Lubrication, Mc Graw-Hill, New-York, 1961
    連結:
  39. [57] Lund, J.W., “Review of the concept of dynamic coefficients for fluid film journal bearings,” J. of Tribolo., Vol. 109, 1987, pp. 37-41.
    連結:
  40. [61] Goldman, P., Petchenev, A., Bently, D.E., Muszynska, A., “Torque And Power Loss in a Cylindrical Fluid-Lubricated earing/Rotor System,” 96-GT-408, IGTI/ASME TURBO EXPO, Birmingham, UK, 1996, pp.1-6.
    連結:
  41. [62] Bently, D.E., Petchenev, A., “Dynamic stiffness and the advantages of externally pressurized fluid film bearings,” ORBIT, Vol. 21, No. 1, 2000, pp. 18-24.
    連結:
  42. [63] Ghosh, B., “An Exact Analysis of a Hydrostatic Journal Bearing With a Large Circumferential Sill, ” Wear, Vol. 21, 1972, pp. 367-375.
    連結:
  43. [64] Ghosh,B., “Load And Flow Characteristics of Capillary-Compensated Hydrostatic Journal Bearing, ” Wear, Vol. 23, 1973, pp. 377-386.
    連結:
  44. [65] Leonard, R., and Rowe, W. B., ”Dynamic Force Coefficients the Mechanism of Instability in the Hydrostatic Journal Bearings, ” Wear, Vol. 23, 1973, pp. 277- 282.
    連結:
  45. [66] Ghosh, M. K., “Dynamic Characteristics of Multirecess Externally Pressurized Oil Journal Bearing,” Journal of Lubrication Technology, Transactions of the ASME, Vol. 100, No. 4, 1978, pp. 467-471.
    連結:
  46. [67] Ghosh, M. K., Majumdar, B. C., and Rao, J. S., “Steady-State and Dynamic Behaviour of Multi- Recess Hybrid Oil Journal Bearings, ” Journal of Mechanical Engineering Science, Vol. 21, No. 5, 1979, pp. 345-351.
    連結:
  47. [68] Moris S. A., “Passively and actively controlled externally pressurized oil-film bearing,” Trans. ASME, Ser. F, Vol. 94, 1972.
    連結:
  48. [70] Lewis G. K., “The stiffness and static of compensated hydrostatic cylindrical-pad bearing,” Proceedings of the Institution of Mechanical Engineers, Vol. 198, No. 16, 1984, pp. 285-292.
    連結:
  49. [72] Sharma S. C., Jain S. C., and Bharuka D. K., “Influence of recess shape on the performance of a capillary compensated circular thrust pad hydrostatic bearing,” Tribology International, Vol. 35, 2002, pp. 347-365.
    連結:
  50. [73] Wang D., “Hydrostatic slideway and its design research,” Lubrication Engineering, No. 4, 2004, pp. 114- 118.
    連結:
  51. [74] 鄭學謙, “靜壓止推軸承使用錐桿節流器之圓形工作台動靜態特性,” 中原大學機械工程學系碩士論文, 2014.
    連結:
  52. [75] 張師維, “靜壓軸承撓性工作台動態分析,” 中原大學機械工程學系碩士論文, 2014.
    連結:
  53. [2] Rippel, H. C., Cast Bronze Hydrostatic Bearing Design Manual, Cast Bronze Bearing Institute, Inc., Cleveland, Ohio 1964.
  54. [3] Rohde, S. M. and Ezzat, H. A., “ On the Dynamic Behavior of Hybrid Journal Bearings, ” Journal of Lubrication Technology, Transactions of the ASME, Vol. 98, No. 1, pp. 90-94, 1976.
  55. [6] Bassani, R. and Piccigallo, B., Hydrostatic Lubrication, Elsevier. Science Publishers B. V., Amsterdam, Netherlands, 1992.
  56. [7] 孟昭焱, 孟心齋與陳樹謙, “ 開式液體靜壓導軌靜態特性與最佳參數, ” 洛陽工學院學院學報, 第21卷, pp. 43-47, 第4期, 2000.
  57. [8] 朱希玲, “ 靜壓軸承壓力場的有限元素數值模擬, ” 上海工程技術大學學報, Vol. 16, No. 2, 2002.
  58. [10] 孟心齋, 楊建璽, 孟昭焱, “ 液體靜壓支承動態性能新表達式探索與實驗驗證, ” 中國工程科學, Vol. 5, No. 3, 2003.
  59. [12] 孫學赟, 羅松保, “ 液體靜壓導軌的動態建模方法的研究, ” 航空學會工藝專業分會輔機學組2005年度學術會議論文集, 2005.
  60. [31] Kang, Y., Hu, S.Y., Chen, S.C., Chang, Y.P., “ Dynamic characteristics of the spool-type constant-flow valves, ” Journal of Advanced Mechanical Design, Systems and Manufacturing, Vol. 7, No. 2, pp. 156-170, 2013.
  61. [36] Sukholutskii, Y. A., “Closed-Loop Hydrostatic Slideways with Regulators,” Stanknii Instrument, Vol. 46, pp 15-18, 1975
  62. [37] Raimondi, A. and Boyd, J., “An analysis of orifice and capillary-compensated hydrostatic journal bearings”, Journal of the American Society of Lubrication Engineering, pp. 29-37, 1957.
  63. [38] Mohsin, M. E., The use of controlled restrictors for compensating hydrostatic bearings. 3rd Int Conf. On Machine Tool Design Research, pp. 429-442, 1963.
  64. [39] Degast, J. G. C., A new type of controlled restrictors(MDR) for double film hydrostatic bearings and its application to high precision machine tools. Proc. 7th Int. Machine Tool Design Research Conf, pp.273-278, 1966.
  65. [41] Aizenshtok, G. I., “ Hydrostatic Slideway with Floating Support, ” STANKI I INSTRUMENT, Vol.45, pp. 14-18, 1975.
  66. [45] Slocum, A. H., “Precision machine design,” Englewood Cliffs, NJ: Prentice-Hall, 1992.
  67. [47] Shaw, M. C. and Macks, E. F., Analysis and Lubrication of Bearings, McGraw-Hill, N. Y., pp. 287-297, 1949.
  68. [51] Telingater, V. S., “ Hydrostatic Slideways Using Standard Bearings, ” Machines and Tooling, Vol. 43, pp. 15-20, 1972.
  69. [52] Yakir, E. M., “ Regulators for Open Hydrostatic Slideways, ” Machines and Tooling, Vol. 44, No. 8, pp. 28-32, 1973.
  70. [55] Harrison, W.J., “The Hydrodynamical Theory of Lubrication of a Cylindrical Bearing Under Variable Load and of a Pivot Bearing,” Transactions of the Cambridge Philosophical Society, Vol. 22, 1919, pp. 373-388.
  71. [58] Lund, J.W. and Thomsen, K.K., Fluid Film Bearing and Rotor Bearing System Design and Optimization, ASME publ., 1978.
  72. [59] Petchenev, A., Bently, D.E., Goldman, P., “1/3 Whirl Phenomenon: Case History on Vibration Response of a Rotor Supported in One Rigid and One Poorly Lubricated Fluid-Film Bearing,” Bently Rotor Dynamic Research Corporation, Report No. 6, 1999.
  73. [60] Petchenev, A., Goldman, P., Muszynska, A., Bently, D.E., “Analytical Study on the Fluid Journal Bearing/Seal/Rotor System,” FED-Vol.207, The Joint ASME & JSME Fluids Engineering Annual Conference, Hilton Head Isl., SC, 1995, p.33-38.
  74. [69] Ingert G. kh. and Lur’e B. G., “Dynamic stiffness of hydrostatic slides,” Machines and Tooling, Vol. 44, No. 8, 1973, pp. 28-32.
  75. [71] Bently, D.E., Petchenev, A., Eldridge T., “The death of whirl-What the SFCB can do for the stability of rotating machinery,” ORBIT, Vol. 21, No. 1, 2000, pp. 10-13.