Title

外溢效果和槓桿效果分析— 以加密貨幣與貨幣指數為實證分析

Translated Titles

The Spillover and Leverage Effects Analysis— An Empirical Study of Cryptocurrency and Currency Index

Authors

賴志龍

Key Words

加密貨幣 ; 外溢效果 ; 槓桿效果 ; GARCH-M-ARMA模型 ; EGARCH-M-ARMA模型 ; Cryptocrrency ; Spillover Effect ; Leverage Effect ; GARCH-M-ARMA ; EGARCH-M- ARMA

PublicationName

中原大學企業管理研究所學位論文

Volume or Term/Year and Month of Publication

2017年

Academic Degree Category

碩士

Advisor

陳若暉

Content Language

繁體中文

Chinese Abstract

本研究在探討比特幣(Bitcoin)、以太幣(Ethereum)、萊特幣(Litecoin)、門羅幣(Moneror)及達世幣(Dash)等5種加密貨幣與美元指數(DXY)、歐元指數(XEU)、日圓指數(XJY)、全球離岸人民幣指數(RXY)及黃金(GOLD)價格等實體貨幣指數之相互關係,蒐集2012年1月1日或加密貨幣創立日至2016年12月31日之每日價格資料。利用GARCH-M-ARMA模型和EGARCH-M-ARMA模型分析加密貨幣與實體貨幣指數間報酬外溢效果、報酬波動性外溢效果、風險與報酬率之間的關連性及槓桿效果。 加密貨幣及貨幣指數皆具有波動叢聚性的現象,且加密貨幣報酬率波動較實體貨幣指數報酬率波動大。在EGARCH-M-ARMA模型下,發現比特幣、歐元及黃金等三種貨幣指數之價格變動產生報酬與波動不對稱之狀況,具有槓桿效果。 在報酬率之外溢效果分析,發現美元、歐元及日圓指數對比特幣出現外溢效果,另美元、歐元、日圓及人民幣指數對萊特幣亦有外溢效果,可作為投資比特幣及萊特幣之觀察指標。報酬波動性之外溢效果分析,在GARCH-M-ARMA模型下,貨幣指數前期報酬波動性對當期加密貨幣報酬波動性之25組樣本組合中,全部出現顯著的外溢效果,顯示貨幣指數之價格變化是影響加密貨幣價格漲跌的重要因素。另發現比特幣與美元指數之樣本組合(BTC/DXY及DXY/BTC),不論在GARCH-M-ARMA模型或EGARCH-M-ARMA模型下,皆出現顯著負的雙向外溢效果。 研究發現DXY、XEU、XJY、RXY及GOLD等五種貨幣指數與比特幣(BTC)及達世幣(Dash)等兩種加密貨幣的風險與報酬率之間,具有正向的顯著關連性。而DXY、XEU、XJY及RXY等四種貨幣指數則和萊特幣(LTC)出現負向的顯著關連性。

English Abstract

The Generalized Autoregressive Conditional Heteroskedasticity-in-Mean-Autoregressive Moving Average (GARCH-M-ARMA) and the Exponentially Generalized Autoregressive Conditional Heteroskedasticity–in-Mean-Autoregressive Moving Average (EGARCH-M- ARMA) models are employed to examine the existence of the spillover effect of return and return volatility and leverage effect between cryptocurrency and fiat currency. This study collects five cryptocurrencies (such as Bitcoin, Ethereum, Litecoin, Moneror, Dash) and fiat currencies (such as the Dollar Index, the Euro Index, the Yen Index, RMB Index and the Gold Price) of daily price from January 1, 2012 or the date of creation cryptocurrency to December 31, 2016. Both the cryptocurrency and the fiat currency have fluctuated on clustering phenomenon, and the fluctuation of the cryptocurrency returns fluctuates greatly comparing to the fiat currency returns. In the EGARCH-M-ARMA model, it was found that the price changes of the three currencies, such as Bitcoin, Euro Index and Gold, produced return and volatility asymmetry, and also had the leverage effect. In the analysis of the spillover effect of the return, it was found that the Dollar Index, Euro Index and Yen Index had a spillover effect on the Bitcoin. Meanwhile, these three indexes and RMB index also had a spillover effect on the Litecoin. In the GARCH-M-ARMA model, there is a significantly spillover effect in the 25 specifications of sample combinations. The previous return volatilities of fiat currencies have impacts on the current returen volatilities of cryptocurrencies. The interesting results revealed that price changes of fiat currencies are greatly affecting cryptocurrencies changes. In addition, it was found that the combination of Bitcoin and Dollar index (BTC / DXY and DXY / BTC) showed significantly two-way negative spillover effect for both GARCH-M-ARMA and EGARCH-M-ARMA model. The empirical results found that there were a significant positive relationship between the risk and return for the fiat currencies (DXY、XEU、XJY、RXY and GOLD) and cryptocurrencies (Bitcoin and DASH). Conversely, there were a significant negative relationship between the risk and return of the fiat currencies (DXY、XEU、XJY and RXY) and Litecoin.

Topic Category 商學院 > 企業管理研究所
社會科學 > 管理學
Reference
  1. 參考文獻
  2. 中文文獻:
  3. 1.王冠閔與吳書慧,(2006),「台灣股、匯市與美國股市傳導機制之實證分析」,運籌研究集刊,第十期,頁10-15。
  4. 2.王凱立,(2007),「一般化GARCH模型於時間序列資料之運用」,東海大學財務專題。
  5. 3.呂安惇,(2009),「全球指數股票型基金之季節性外溢效果與槓桿效果分析」,中原大學企業管理研究所未出版碩士論文。
  6. 4.呂瑞秋、陳淑華(2011), 「黃金價格與股價指數、石油價格及波動率指數關係之研究」,臺灣銀行季刊,第六十三卷第二期,頁131-149。
  7. 5.張鼎煥、張晏誠(2011), 「金融資產對黃金期貨報酬與風險傳遞效果之研究」,朝陽商管評論,第十卷第二期,頁95-111。
  8. 6.黃靜怡,(2014),「外溢效果和槓桿效果分析-以稀土礦產型ETF為實證」, 中原大學企業管理研究所未出版碩士論文。
  9. 7.楊奕農,(2005),「時間序列分析 經濟與財務上之應用」,台北市雙葉書廊。
  10. 8.楊曉晨、張明,(2014),「比特幣:運行原理、典型特徵與前景展望」,金融評論第1期,頁38-53。
  11. 9.葉銀華、蔡麗茹(1990),「不同波動期間之期望報酬與風險關係的實證研究-不對稱GARCH-M模型之應用」,輔仁管理評論,第七卷第二期,頁161-180。
  12. 10.廖偉真、雷立芬(2010),「不同樣本頻率之股市波動性估計—GARCH、TGARCH與E GARCH之比較」,臺灣銀行季刊,第六十一卷第四期,頁294-307。
  13. 11.蔡海倫,(2008),「美國存託憑證與股票指數之不對稱外溢效果:次貸風暴的實證」,中原大學企業管理研究所未出版碩士論文。
  14. 12.鄭婉秀、吳雅惠(2010),「石油、黃金與美元指數期貨波動外溢效果之探討」,風險管理學報,第十二卷第二期,頁211-233。
  15. 13.謝淑貞、莊家彰(2003) ,「ARCH與價量關係:以新台幣/美元匯率為例」,國立中央大學台灣經濟發展研究中心。
  16. Reference:
  17. 1.Akgiray, V. (1989), “Conditional heteroscedasticity in time series of stock returns:Evidence and forecasts”, Journal of Business, 62, 55-80.
  18. 2.Apte, P. (2001), “The interrelationship between the stock markets and the foreign exchange market”, Indian Institute of Management, Bangalore, Research Paper, (169).
  19. 3.Baek, C. and Elbeck, M. (2015), “Bitcoins as an investment or speculative vehicle? A first look”, Applied Economics Letters, 22(1-3), 30-34.
  20. 4.Black, F. (1976), “Studies of stock market volatility changes”, Proceedings of the meetings of the American Statistical Association, Business and Economic Statistics Section, 177-181.
  21. 5.Bollerslev, T. (1986), “Generalized autoregressive conditional heteroscedasticity”, Journal of Econometrics, 31(3), 307-327.
  22. 6.Bouoiyour, J. and Selmi, R. (2015), “Bitcoin price: Is it really that new round of volatility can be on way?”, MPRA Paper No.65580.
  23. 7.Bouoiyour, J., Selmi, R. and Tiwari, A. (2014), “Is Bitcoin business income or speculative bubble? Unconditional vs.conditional frequency domain analysis”, Working Paper, MPRA Paper No.59595.
  24. 8.Box, G. E. P. and Jenkins, G. M. (1976), “Time series analysis:Forecasting and control”, San Francisco: Holden - Day Inc.
  25. 9.Brandvold, M., Molnár, P., Vagstad, K. and Valstad, O. C. A. (2015), “Price discovery on Bitcoin exchanges”, Journal of International Financial Markets, Institutions & Money, 36, 18-35.
  26. 10.Buchholz, M., Delaney, J., Warren, J. and Parker, J. (2012), “ Bits and bets — Information, Price volatility, and demand for Bitcoin”, Working Paper. (www.bitcointrading.com/pdf/bitsandbets.pdf.)
  27. 11.Chaum, D. (1983), “Blind signatures for untraceable payments ”, Advances in Cryptology , Proceedings of Crypto, 82(3) , 199–203.
  28. 12.Chen, J. H. and Diaz, J. F. (2012(A)), “Spillover and asymmetric-volatility effects of leveraged and inverse leveraged exchange traded funds”, Journal of Business and Policy Research, 7(3), 1-10.
  29. 13.Chen, J. H. and Diaz, J. F. (2012(B)), “Spillover and leverage effects of faith-based exchange-traded funds”, Journal of Business Policy and Research, 7(2), 1-12.
  30. 14.Chen, J. H. and Huang, C. Y. (2010), “An analysis of the spillover effects of exchange-traded funds”, Applied Economics, 42(7-9), 1155-1168.
  31. 15.Chen, J. H. and Huang, Y. F. (2014), “Long memory and structural breaks in modelling the volatility dynamics of VIX-ETFs”, International Journal of Business, Economics and Law, 4(1) , 2289-1552.
  32. 16.Chen, J. H. and Maya, Malinda (2014), “The study of the spillover and leverage effects of financial exchange traded funds (ETFs)”, Frontiers in Finance and Economics, 11(2), 41-59.
  33. 17.Chen, S., Hardle, W. K., Chen, C. Y., Lee, T. and Ong, B. (2016), “A first econometric analysis of the CRIX family”, Working Paper. (sfb649.wiwihu-berlin.de/papers/pdf/SFB649DP2016-031.pdf.)
  34. 18.Cheung, Y. and Ng, L. (1992), “Stock price dynamics and firm size: An empirical investigation”, Journal of Finance, 47, 1985-1997.
  35. 19.Chu, J., Nadarajah, S. and Chan, S. (2015), “Statistical analysis of the exchange rate of bitcoin”, PLOS ONE 10 (7):e0133678.
  36. 20.Dyhrberg, A. H. (2016), “ Bitcoin, gold and the dollar–A GARCH volatility analysis”, Finance Research Letters, 16, 85–92.
  37. 21.Engle, R. F. (1982), “Autoregressive conditional heteroskedasticity with estimated of the variance of United Kingdom inflation”, Econometrica, 50, 987-1007.
  38. 22.Engle, R. F., Lilien, D. M. and Robins, R. P. (1987), “Estimating time varying risk premia in the term structure: The ARCH-M Model”, Econometrica, 55(2), 391-407.
  39. 23.European Central Bank (ECB) (2012), “Virtual currency schemes”, Report. (www.ecb.int/pub/pdf/other/virtualcurrencyschemes201210en.pdf.)
  40. 24.European Central Bank (ECB) (2015), “Virtual currency schemes–a further analysis” , Report. (www.ecb.europa.eu/pub/pdf/other/virtualcurrencyschemesen.pdf.)
  41. 25.Gandal, N. and H. Halburda (2014), “Competition in the cryptocurrency market”, Bank of Canada Working Paper, 2014–2033.
  42. 26.Glosten, L. R., R. Jagannathan, and D. E. Runkle (1993), "On the relation between the expected value and the volatility of the nominal excess return on stocks", Journal of Finance, 48, 1779-1801.
  43. 27.Hsieh, D. A. (1988), “The statistical properties of daily foreign exchange rates:1974-1983” , Journal of International Economics, 24, 129-145.
  44. 28.International Monetary Fund (IMF) (2016), “Virtual currencies and beyond: Initial considerations”, Report. (www.imf.org/external/pubs/ft/sdn/2016/sdn1603.pdf.)
  45. 29.Kanas, A. (2000), “Volatility spillovers between stock return and exchange rate changes: International evidence”, Journal of Business Finance and Accounting, 27(3-4), 447-467.
  46. 30.McCurdy, T. H. and I. Morgan (1988), “Testing the martingale hypothesis in deutsche mark futures with models specifying the form of the heteroskedasticity” , Journal of Applied Econometrics, 3, 187-202.
  47. 31.McDonald, J. G. and Solinick, B. H. (1977), “Valuation and strategy for gold stocks”, Journal of Portfolio Management, 4, 9-33.
  48. 32.Najand, M. and K. Yung (1994), “Conditional heteroskedasticity and the weekend effect in S&P 500 Index Futures”, Journal of Business Finance and Accounting, 21(4),603-612.
  49. 33.Nakamoto, S. (2008), “Bitcoin: A peer-to-peer electronic cash system”, Report. (bitcoin .org/bitcoin.pdf.)
  50. 34.Nelson, D. (1991), “Conditional heteroskedasticity in asset returns: A new approach”, Economics, 8, 347-370.
  51. 35.Osterrieder, J. (2016), “The statistics of bitcoin and cryptocurrencies”, Working paper. (papers.ssrn.com/sol3/papers.cfm?abstract_id=2872158.)
  52. 36.Sazbo, N. (1998), Paper. (unenumerated.blogspot.tw/2005/12/bit-gold.html.)
  53. 37.Stråle Johansson, N. and Tjernström, M. (2014), “ The price volatility of bitcoin —A search for the drivers affecting the price volatility of this digital currency”, Student paper, Umeå universitet.
  54. 38.Wei, Dai (1998), “Anonymous, distributed electronic cash system”, Working Paper. ( http://www.weidai.com/bmoney.txt.)
  55. 39.West, K. D. & D. Cho (1995), “The predictive ability of several models of exchange rate volatility”, Journal of Econometrics, 69(2), 367-391.
  56. 40.Yermack, D. (2014), “Is bitcoin a real currency? An economic appraisal”, Working Paper 19747, National Bureau of Economic Research, Massachusetts.