Title

固定化澱粉質吸附材於乙醇脫水 之動態吸附研究

Translated Titles

Kinetic Adsorption Study for Ethanol dehydration using Immobilization starch-based adsorbent

DOI

10.6840/CYCU.2011.00455

Authors

許瑋真

Key Words

生物吸附材 ; 固定化 ; 貫流曲線 ; 溶膠-凝膠 ; 乙醇-水混合物 ; Bio-adsorbent ; Immobilize ; Breakthrough curve ; Sol-Gel ; Ethanol-water mixture.

PublicationName

中原大學化學工程研究所學位論文

Volume or Term/Year and Month of Publication

2011年

Academic Degree Category

碩士

Advisor

鍾財王

Content Language

繁體中文

Chinese Abstract

在酒精和水混合物的分離技術當中,於一大氣壓下,酒精和水組成為95.6wt%時,在78.2℃會瓹生共沸點,而吸附分離相較於傳統共沸蒸餾或萃取蒸餾為一種較節能的程序,因此被廣泛運用在酒精脫水。由於其吸附選擇性及再生效率較差,近年來有些學者開始利用澱粉等材料來當作吸附材,但未經處理的澱粉吸附材有膨潤及糊化等問題。因此,本研究利用Sol-Gel法成功將澱粉固定化在矽膠基材上,以解決澱粉在吸附上所遇到的問題。本論文先利用BET比表面積測定儀,使用固定化澱粉作為吸附劑,得到不同的吸附帄衡數據,由數學分析等溫線吸附帄衡關係式,取得等溫吸附帄衡曲線圖及其參數。最後由實驗方式將顆粒狀固定化澱粉填充於單一吸附塔中進行模擬,研究中藉由改變不同的操作條件(如進料濃度、氣體流速、吸附材顆粒大小及床層高度)探討各種變因對貫流行為的影響,並以傅立業紅外線光譜儀取代傳統氣相層析儀,快速有效率的偵測濃度的變化。結果可發現,貫流曲線的突破時間因進料濃度和氣體流速的增加而提前,而床層高度的增加會使突破時間延後。吸附材顆粒大小及床層高度對於出口濃度C/Co值影響較為顯著,且系統Roll-over 的現象也隨著氣體流速的增加而愈明顯。在動態吸附實驗中,其貫流曲線斜率及出口濃度 C/Co 值最能代表系統行為,本研就藉由回應曲面法( Response surface methodology, RSM ),發現在進料濃度為92%、吸附材顆粒為1~2 mm、進料氣體流速為500 sccm及床層高度7 cm 速率下,為本研究實驗範圍內的佳操作條件。

English Abstract

In the distillation separation of ethanol vapor and water vapor, it can form an zoetrope at 78.2℃, at which there are 95.6wt% ethanol and 4.4wt% water. Traditional azeotropic distillation and extractive distillation to obtain anhydrous ethanol need more energy than adsorption. Adsorption as a low energy consumption process has attracted attention to apply in ethanol dehydration. Recently, some investigators have tried to use starch to replace Zeolite 3A. However, it has a low efficiency in adsorption selectivity and regeneration and starch powder was become glue after adsorption with water vapor. In the present study, starch was immobilized using sol-gel method to solve these problems. This study obtained adsorption equilibrium data by the BET experiment for water and ethanol on immobilized starch. Then isotherm curve and the parameters by numerical method and expressed by the Langmuir isotherm. The isotherm is applied to analyze the effect of the variables such as feed concentration, velocity, particle size and bed length on the breakthrough performance. Breakthrough curves of ethanol were measured by using a gas-phase FT-IR instead of traditional GC. Application of the gas-phase FT-IR could detect changes of gas concentration more fast than the traditional GC. Results showed that on influence of feed concentration, velocity, particle size and bed length is significant on different on breakthrough time and breakthrough curve shape. The effects of particle size and bed length on outlet concentration (C/Co) is significant, with increase of the velocity the roll-over phenomenon is more obvious. In dynamic absorption, the slope of breakthrough curve and C/Co may represent mass transfer behavior. The optimum experimental parameters were expressed as follows: Inlet concentration: 92%, particle size: 1~2 mm, velocity: 500 sccm and the length of the bed: 7cm.

Topic Category 工學院 > 化學工程研究所
工程學 > 化學工業
Reference
  1. [3] Ladishc M R, Dyck K K., “Dehydration of ethanol: New approach gives positive energy balance”, J. Science, 205, 898-900, 1979
    連結:
  2. [5] Pitt, W.W., G.L. Hagg and D.D. Lee, “Recovery of Ethanol from Fermentation Broths Using Selective Sorption-Desorption”, Biothernol. Bioeng., 25(1), 123-131, 1983.
    連結:
  3. [6] Farhadpour, F.A. and A. Bono, “Sorption Separation of Ethanol-Water Mixture With a Bi-dispersed Hydrophobic Molecular Sieve, Sillicalite : Determination of the Controlling Mass Transfer Mechanism”, Chem. Eng. Process, 35(2),141-155, 1996
    連結:
  4. [8] Teo, W.K. and D.M. Ruthven, “Adsorption of Water from Aqueous Ethanol Using 3A Molecular Sieves”, Ind. Eng. Chem. Process Des. Dev., 25(1), 17-21, 1986.
    連結:
  5. [9] Rao, D.R. and S. Sircar, “Liquid-phase Adsorption of Bulk Ethanol-Water Mixtures by Alumina”, Adsorpt. Sci. Technol., 10, 93-104, 1993.
    連結:
  6. [10] Ladisch, M.R., M. Voloch, J. Hong, P. Bienkowski and G.T. Tsao, “Cornmeal Adsorber for Dehydration Ethanol vapors”, Ind. Eng. Chem. Process Des. Dev., 23(3), 437-443, 1984.
    連結:
  7. [11] Anderson, L.E., M. Gulati, P.J. Westgate, E.P. Kvam, K. Bowman and M.R. Ladisch, “Synthesis and Optimization of a New Starch-Based Adsorbent for Dehumidification of Air in a Pressure-Swing Dryer”, Ind. Eng. Chem. Res., 35(4), 1180-1187, 1996.
    連結:
  8. [12] Berry, K.E. and M. R. Ladisch, “Adsorption of Water from Liquid-Phase Ethanol-Water Mixtures at Room Temperature Using Starch-Based Adsorbents”, Ind. Eng. Chem. Res., 40(9), 2112-2115, 2001.
    連結:
  9. [13] Vareli, G.D., P.G. Demertzis and K. Akrida-Demertzi, “Water and ethanol adsorption on starchy and cellulosic substrates as biomass separation systems”, Z Lebensm Unters Forsch A, 205(3), 204-208, 1997.
    連結:
  10. [14] Dyck, K.; Ladisch, M. R., “Dehydration of Ethanol : New Approach Gives Positive Energy Balance”, American Association for the Advancement of Science. 205, 898-900, 1979.
    連結:
  11. [15] Al-Asheh, S., F. Banat and N. Al-Lagtah, “Separation of Ethanol-Water Mixtures Using Molecular Sieves and Biobased Adsorbents”, Chem. Eng. Res. Des., 82(A7), 855-864, 2004.
    連結:
  12. [16] 王冠翔. 探討非傳統吸附材去除酒精中微量水分之研究. 中原大學, 2008.
    連結:
  13. [17] 劉祐維. 固定化生物吸附材於乙醇-水之吸附選擇性探討. 中原大學, 2010.
    連結:
  14. [18] Pruksathorn, P. and T. Vitidsant, “Production of pure ethanol from azeotropic solution by pressure swing adsorption”, Korean J. Chem. Eng., 26(4), 1106-1111, 2009.
    連結:
  15. [19] Simo, M., C. J. Brown and V. Hlavacek, “Simulation of pressure swing adsorption in fuel ethanol production process”, Comput. Chem. Eng., 32(7), 1635-1649, 2008.
    連結:
  16. [20] Ladisch M R, Dyck K, “Dehydration of Ethanol: New Approach Gives Positive Energy Balance”, J. Science, 205, 898-900, 1979.
    連結:
  17. [22] Carmo M.J, Gubulin J.C , “Ethanol-water adsorption on commercial 3A zeolites: kinetic and thermo-dynamic”, J. Chemica1 Engineering, 14(3), 217- 224, 1997
    連結:
  18. [23] Fawzi A, Bnaat, Fahmi A, Abu AI-Rub, Jnaa Simnadl. “Analysis of vapor-liquid equilibrium of ethanol-water systemvia headspace gas chromatography effect of molecular sieves”, J. Separation and Purification Technology, 18III-118, 2000
    連結:
  19. [24] Abu AI-Rub, Famhi A, “Vapor-liquid equilibrium of ethanol-water system in presence of molecular sieves”, J. Separation Science Technology, 34 (12), 2355-2368, 1999.
    連結:
  20. [25] Dyck, K.; Ladisch, M. R., “Dehydration of Ethanol : New Approach Gives Positive Energy Balance”, American Association for the Advancement of Science. 205, 898-900, 1979.
    連結:
  21. [26] Liadisch, M. R.; Monke, K., “Characterization of the Swelling of a Size-Exclusion Gel”, Biotechnol. Prog, 6, 376-382, 1990.
    連結:
  22. [27] Liadisch, M. R.; Westgate, P. J., “Sorption of Organics and Water on Starch.” , Ind. Eng. Chem. Res. 32, 1676-1680, 1993.
    連結:
  23. [28] Liadisch, M. R., “Biobased Adsorbent for Drying of Gases. Enzyme and Microbial”, Technology. 20, 162-164, 1997.
    連結:
  24. [29] Guisan, J. M., “Immobilization of Enzymes and Cells”, Humana Press, 2006.
    連結:
  25. [33] Ruthven, D.M., “Principles of adsorption and adsorption processes”, John Wiley & Sons 1984.
    連結:
  26. [37] Webb, P. A.; Orr, C., “Analysis Methods in Fine Particle Technology”, Micromeritics Instrument Corporation, 1997.
    連結:
  27. [38] Langmuir, I., “Adsorption of gases by solid”, J. Am .Chem. Soc 38(10), 2267, 1916.
    連結:
  28. [39] Langmuir, I., “Adsorption of gases on plane surface of glass mica and platinum”, J. Am. Inst Chem. Soc, 1918.
    連結:
  29. [40] Ruthven, D.M., “Principles of adsorption and adsorption processes”, John Wiley & Sons 1984.
    連結:
  30. [1] 林祐生. 李文乾. 生質酒精, 科學發展, 433 期, 2009
  31. [2] Serra A, Poch M, Sola C, “A Survey of Separation Systems for Fermentation Ethanol Recovery”, Process Biochemistry, 23,154-158, 1987.
  32. [4] Ladiseh M R, Tsao G. T, “Vapor-Phase Dehydration of Aqueous alcohol Mixture”, Patent. US:4345973, 1982
  33. [7] Garg, D.R. and J.P. Ausikaitis, “Molecular Sieve Dehydration Cycle for High Water Content Stream”, Chem. Eng. Prog., 79(4), 60-65, 1983.
  34. [21] 白坤.美國燃料乙醇生瓹,澱粉與澱耪糖. 1, 10-13, 2002
  35. [30] 黃劍鋒, 溶膠-凝膠原理與技術. 化學工業出版社, 2005.
  36. [31] 章裕民,環境工程化學.文京, 135-140, 1998
  37. [32] 楊萬發, 譯水及廢水處理化.學國立編譯館, 1992
  38. [34] Hines, A.L., and R.N. Maddox, “Mass Transfer Fundamentals and Applications”, Prentice Hall PTR, 1984.
  39. [35] Smith, J.M., H.C. Van Ness, and M.M. Abbott, “Introduction to chemical engineering thermodynamics”, McGraw-Hill Professional New York 536-553, 1996.
  40. [36] 李國希, 吸附科學. 化學科工業出版社, 2007.
  41. [41] 徐偉華、盧廷政, 利用磁場促進生物流體化床反應器性能之探討, 2008
Times Cited
  1. 張義雄(2007)。從家長觀點探討補教業關鍵成功因素-以大台北地區補習班為例。淡江大學管理科學研究所企業經營碩士在職專班學位論文。2007。1-247。 
  2. 鄭芮蕎(2011)。劇團長期校園演出的執行與效益-以大開劇團「兒童戲劇校園巡演暨故事創作比賽」計畫為例。臺北藝術大學藝術行政與管理研究所碩士班學位論文。2011。1-99。 
  3. 饒立凡(2010)。臺灣西式樂團國際展演經驗之研究。臺北藝術大學藝術行政與管理研究所碩士班學位論文。2010。1-76。 
  4. 古競祥(2014)。探討競賽團隊的領導與管理 -以戈壁挑戰賽為例。臺灣大學商學組學位論文。2014。1-93。 
  5. 王聰穎(2011)。廣播節目宣導對學校體育政策推展之研究—以「體育發燒」節目為例。臺灣師範大學運動與休閒管理研究所在職碩士班學位論文。2011。1-203。
  6. 胡惠雯(2012)。文化創意園區的發展態樣與都市活化:日本六本木之丘與法國104創意藝術中心個案研究。中興大學科技管理研究所學位論文。2012。1-93。
  7. 葉瀚陽(2016)。與夜市共存-都市更新壓力下的饒河街改造計畫。淡江大學建築學系碩士班學位論文。2016。1-46。