Title

水熱合成氧化鐵奈米結構於砷(V)離子之吸附

Translated Titles

Hydrothermal Synthesis of Iron Oxide Nanostructures for the Adsorption of As(V) Ion

Authors

陳嘉伶

Key Words

氧化鐵 ; 砷離子之吸附 ; Iron Oxide ; Adsorption of As Ion

PublicationName

中原大學化學工程研究所學位論文

Volume or Term/Year and Month of Publication

2012年

Academic Degree Category

碩士

Advisor

林義峰

Content Language

繁體中文

Chinese Abstract

本研究使用水熱法分別以低溫 70 ℃與高溫 180 ℃為反應溫度,硫酸亞鐵與HMTA 為反應物,成功製備氧化鐵之奈米粒子與片狀結構。此外,為了克服小粒徑氧化鐵奈米粒子易團聚的缺點,於上述高溫 180 ℃反應中加入酚(Phenol),以進行酚醛(Phenol-Formaldehyde, PF)高分子聚合反應,形成有機無機混成之酚醛樹脂/氧化鐵複合材料,並於大氣環境下,進行高溫鍛燒,將酚醛樹脂移除,形成高孔隙度和表面積之氧化鐵孔洞材料。其中,HMTA 的多寡,使酚醛產生不同程度的聚合,造成高溫鍛燒時孔隙度的差異,可提升原先奈米粒子的比表面積,並藉 由氧化鐵本身具有的磁性和高比表面積,進行砷(V)離子的吸附,且藉由一外加磁場,即可將氧化鐵孔洞材料分離,降低分離成本,並提升其吸附效能,於重金屬水處理之應用具有相當大的潛力。最後,利用聯胺作為還原劑和酚醛樹脂輔助下於氮氣環境鍛燒將氧化鐵還原,使其提升對砷(V)離子的吸附效果。

English Abstract

In this study, the reaction temperature were low-temperature of 70°C and high temperature of 180°C in the hydrothermal process, in the presence of FeSO4 ·7H2O and HMTA, successful preparation of iron oxide nanoparticles and the plate structure. In addition, in order to overcome the shortcomings of small particles of iron oxide nanoparticles agglomeration, the high temperature 180°C reaction by adding phenol for the phenolic (Phenol-Formaldehyde, PF) polymerization. The product was organic-inorganic hybrid of phenolic resin/iron oxide composites. After the high-temperature calcination in air, removing the phenolic resin, the formation of the porous iron oxide of high porosity and surface area. The amount of HMTA affected that phenolic produce different degrees of polymerization, resulting in the differences of the porosity at the high-temperature calcination. Then, the original nanoparticles can enhance the specific surface area, and using the iron oxide itself has magnetic properties and high specific surface area in arsenic(V)ion adsorption. Iron oxide porous material can be separation by an external magnetic field, reducing separation costs, and enhance the adsorption performance has considerable potential for heavy metals in water treatment applications. Finally, the use of hydrazine as a reducing agent and phenolic resin-assisted to reduce the iron oxide in the nitrogen environment calcination, it enhance the effect of the adsorption of arsenic(V) ions.

Topic Category 工學院 > 化學工程研究所
工程學 > 化學工業
Reference
  1. [10] Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, and H. Yan, “One-Dimensional Nanostructures Synthesis Characterization and Applications,” Advanced Materials 2003, 15, 353.
    連結:
  2. [11] Y. Wu, P. Yang, “Direct Observation of Vapor−Liquid−Solid Nanowire Growth,” Journal of the American Chemical Society 2001, 123, 3165.
    連結:
  3. [12] W. Hui, X. Jiaqiang, and P. Qingyi, “Synthesis and chlorine sensing properties of nanocrystalline hierarchical porous SnO2 by a phenol formaldehyde resin-assisted process,” CrystEngComm 2010, 12, 1280.
    連結:
  4. [13] G. Gao, Xi. Liu, R. Shi, K. Zhou, Y. Shi, R. Ma, Eiji T.-M., and G. Qiu, “Shape-Controlled Synthesis and Magnetic Properties of Monodisperse Fe3O4 Nanocubes,” Crystal Growth & Design 2010, 10, 2888.
    連結:
  5. [14] R. Liu, Y. Zhao, R. Huang, Y. Zhao, and H. Zhou, “Shape Evolution and Tunable Properties of Monodisperse Magnetite Crystals Synthesized by a Facile Surfactant-Free Hydrothermal Method,” European Journal of Inorganic Chemistry 2010, 4499.
    連結:
  6. [15] X. Wu, J. Tang, Y. Zhang, and H. Wang “Low temperature synthesis of Fe3O4 nanocrystals by hydrothermal decomposition of a metallorganic molecular precursor,” Materials Science and Engineering B 2009, 157, 81.
    連結:
  7. [16] M. Srivastava, A. K. Ojha, S. Chaubey, J. Singh, P. K. Sharma, and A. C. Pandey, “Investigation on magnetic properties of α-Fe2O3 nanoparticles synthesized under surfactant-free condition by hydrothermal process,” Journal of Alloys and Compounds 2010, 500, 206.
    連結:
  8. [17] J. Lu, X. Jiao, D. Chen, and W. Li, “Solvothermal Synthesis and Characterization of Fe3O4 and γ-Fe2O3 Nanoplates,” Journal of Physical Chemistry C 2009, 113, 4012.
    連結:
  9. [18] Z. Wu, W. Li, P. A. Webley, and D. Zhao, “General and Controllable Synthesis of Novel Mesoporous Magnetic Iron Oxide@Carbon ncapsulates for Efficient Arsenic Removal,” Advanced Materials 2012, 24, 485.
    連結:
  10. [19] F. Jiao, J.-C. Jumas, M. Womes, Alan V. Chadwick, An. Harrison, and Peter G. Bruce, “Synthesis of Ordered Mesoporous Fe3O4 and γ-Fe2O3 with Crystalline Walls Using Post-Template Reduction/Oxidation,” Journal of the American Chemical Society 2006, 128, 12905.
    連結:
  11. [21] P. Wang, and Irene M.C. Lo, “Synthesis of mesoporous magnetic γ-Fe2O3 and its application to Cr(VI) removal from contaminated water,” Water research 2009, 43, 3727.
    連結:
  12. [22] T. Tuutijärvi, J. Lu, M. Sillanpää, and G. Chen, “As(V) adsorption on maghemite nanoparticles,” Journal of Hazardous Materials 2009, 166, 1415.
    連結:
  13. [23] X. Y. Chu, X. Hong, X. T. Zhang, P. Zou, and Y. C. Liu, “Heterostructures of ZnO Microrods Coated with Iron Oxide Nanoparticles,” Journal of Physical Chemistry C 2008, 112, 15980.
    連結:
  14. [24] Y. Hou, Z. Xu, and S. Sun, “Controlled Synthesis and Chemical Conversions of FeO Nanoparticles,” Angewandte Chemie International Edition 2007, 46, 6329.
    連結:
  15. [25] L. Han, Y. Chen, and Y. Wei, “Hierarchical Flower-like Fe3O4 and γ-Fe2O3 Nanostructures: Synthesis, Growth Mechanism, and Photocatalytic Properties,” CrystEngComm 2012, 14, 4692.
    連結:
  16. [26] G. Sun, B. Dong, M. Cao, B. Wei, and C. Hu, “Hierarchical Dendrite-Like Magnetic Materials of Fe3O4 , γ-Fe2O3 , and Fe with High Performance of Microwave Absorption,” Chemistry of Materials 2011, 23, 1587.
    連結:
  17. [27] Steve C. F. Au-Yeung, G. Denes, J. E. Greedan, Donald R. Eaton, and T. Birchall, “A Novel Synthetic Route to "Iron Tribydroxide, Fe(OH)3 ": Characterization and Magnetic Properties,” Inorganic Chemistry 1984, 23, 1513.
    連結:
  18. [28] X. Wang, Z. Zhao, J. Qu, Z. Wang, and J. Qiu, “Shape-Control and Characterization of Magnetite Prepared via a One-Step Solvothermal Route,” Crystal Growth & Design 2010, 10, 2863.
    連結:
  19. [29] X. Yu, K. Chen, “A facile surfactant-free fabrication of single-crystalline truncated Fe3O4 cubes,” Materials Science and Engineering B 2011, 176, 750.
    連結:
  20. [31] K. S. W. Sing, “Reporting Physisorption Data for Gas/Solid System – with Special Reference to the Determination of Surface Area and Porosity,“ Pure and Applied Chemistry 1982, 54, pp.2201-2218.
    連結:
  21. [33] Yannick M.-P., Charlotte H., Nicolas M., and Michèle R., “Arsenic(V) adsorption from aqueous solution onto goethite, hematite, magnetite and zero-valent iron: Effects of pH, concentration and reversibility,” Desalination 2011, 281, 93.
    連結:
  22. [36] L. Costa, L. R. diMontelera, G. Camino, E. D. Weil, and E. M. Pearce, “Structure-charring relationship in phenol-formaldehyde type resins,” Polymer Degradation Stability 1997, 56, 23.
    連結:
  23. [37] S.-R. Guo, J.-Y. Gong, P. Jiang, M. Wu, Y. Lu, and S.-H. Yu, “Biocompatible, Luminescent Silver@Phenol Formaldehyde Resin Core/Shell Nanospheres: Large-Scale Synthesisand Application for In Vivo Bioimaging,” Advanced Functional Materials 2008, 18, 872.
    連結:
  24. [38] C.L. Chuang, M. Fan, M. Xu, R.C. Brown, S. Sung, B. Saha, and C.P. Huang, “Adsorption of arsenic(V) by activated carbon prepared from oat hulls,” Chemosphere 2005, 61, 478.
    連結:
  25. [39] W. Chen, R. Parette, J. Zou, Fred S. annon, and Brian A. Dempsey, “Arsenic removal by iron-modified activated carbon,” Water research 2007, 41, 1851.
    連結:
  26. [1] 施周,張文輝。環境奈米技術。五南圖書,台灣,2006。P.33-42
  27. [2] 呂宗昕著。圖解奈米科技與光觸媒。商周出版,台北,2003。P.100-101, P.126-145
  28. [3] 張安華主編,劉陵崗,李進興等編著。實用奈米技術。新文京開發出版股份有限公司,台北,2005。P.35-98
  29. [4] 丁志明,方冠榮,吳季珍等編著。奈米科技-基礎、應用與實作-。高立圖書有限公司,台北,2003。P.35-94
  30. [5] Cullity, B. D., Introduction to magnetic materials; IEEE/Wiley: Hoboken, N.J., 1972. P.85-246
  31. [6] 李國棟。無所不在的磁-粒子磁矩與固體磁性。世茂出版社,台北,2005。
  32. [7] Bertotti, Giorgio, Hysteresis in magnetism: for physicists, materials scientists, and engineers, San Diego : Academic Press, 1998. P.1-19
  33. [8] Gubin, S. P., Magnetic nanoparticles, Weinheim : Wiley-VCH, 2009. P13-16, P.197-232
  34. [9] 張晉。水處理工程與設計 下。鼎茂圖書,台灣,1996。P.12-2 ~ 12-11
  35. [20] Cafer T. Yavuz, J. T. Mayo, William W. Yu, A. Prakash, Joshua C. Falkner, S. Yean, L. Cong, Heather J. Shipley, A. Kan, M. Tomson, D. Natelson, and Vicki L. Colvin, “Low-Field Magnetic Separation of Monodisperse Fe3O4 Nanocrystals,” Science 2006, 314, 964.
  36. [30] 陳永主編。多孔材料製備與表徵。中國科學技術大學出版社,安徽,2010。P.1-83
  37. [32] 金映君。檸檬酸鹽/Fe(III)、矽酸鹽/Fe(III)合成氧化鐵吸附砷之研究。國立中山大學,海洋環境及工程學系碩士論文,2006。P.8
  38. [34] 村山新一,洪純仁編譯。酚醛樹脂。復文書局,台南,1988。P.1-15
  39. [35] Pilato L., Phenolic Resins: A Century of Progress, Springer-Verlag Berlin Heidelberg Publisher, 2010, P.43; 109.