透過您的圖書館登入
IP:18.227.114.125
  • 學位論文

微-奈米碳球製備活性碳之研究

Preparation of activated carbon using micro-nano carbon spheres

指導教授 : 李中光 趙煥平

摘要


本研究以木糖、葡萄糖及蔗糖為原料,先以水熱合成法製備出微-奈米碳球,再於600-800℃進行高溫碳化,接著將高溫碳化後之碳球與一定量的KOH混合(鹼碳比為2、3、4、5),研磨後在600~900 ℃下分別持溫120、180、240、300分鐘進行化學活化以製備活性碳。在儀器鑑定方面,使用TEM、XRD、氮吸脫附曲線、FTIR、界達電位儀等儀器及量測結果來分別觀察製程中材料之表面型態、微結構、孔洞結構(表面積、孔隙體積及孔洞大小分佈)、表面官能基及表面電性,隨製程參數之變化情形。經由這些鑑定結果,不但可獲得最適之製程參數,同時可製備具高比表面積及高孔隙體積之活性碳以供後續吸附之應用,也可對活性碳之形成機制提供更進一步之訊息。 在吸附測試方面,量測ㄧ種鹼性染料分子(MG5)、一種酸性染料分子(AR1)、ㄧ種有機物(酚)及兩種重金屬離子(Cu2+ 及Pb2+)在經由不同製程參數製備所得之活性碳上之飽和吸附量以探討其吸附應用潛能。研究結果發現,以葡萄糖、蔗糖及木糖為原料製備所得之活性碳其最大之比表面積分別為1611.7、1493.6 及1362.5 m2/g,微孔佔孔洞體積比率分別為41.0、92.4及83.8 %,而產率則分別為11.5、19.2及10.8 %。在吸附測試方面,對MG5來說,以葡萄糖、蔗糖及木糖為原料製備所得之活性碳其最大之吸附量分別為443.9、538.0 及599.4 mg/g。對AR1來說,以葡萄糖、蔗糖及木糖為原料製備所得之活性碳其最大之吸附量分別為345.7、189.3 及371.8 mg/g。對酚來說,以葡萄糖、蔗糖及木糖為原料製備所得之活性碳其最大之吸附量分別為277.9、267.2 及331.9 mg/g。對銅離子來說,以葡萄糖、蔗糖及木糖為原料製備所得之活性碳其最大之吸附量分別為58.1、64.6及61.3 mg/g。對鉛離子來說,以葡萄糖、蔗糖及木糖為原料製備所得之活性碳其最大之吸附量分別為81.1、86.6 及91.0 mg/g。 由上述結果可知,雖然所製備之活性碳其比表面積並不是很高,但其在吸附去除水中污染物時,仍具有相當大之應用潛能。

關鍵字

吸附 水熱法 碳球 活性碳

並列摘要


The main factors that affect the activated carbon derived from three sugars (glucose, sucrose, and xylose) to form hydrothermal carbon spheres were studied by chemical activation with solution of KOH. The experimental operating conditions were as follows: the carbonized temperature 600-800℃ and keeping time 3 h using N2 as protective gas; the activation temperature 600-900℃ and holding time 2-5 h; the 2-5 folds mass ratio of KOH to carbonized material; the 30 min of soaking carbonized material in the solution of KOH. Effects of preparation conditions on the revolution of microstructure and surface chemistry characteristics of activated carbon are characterized with TEM, XRD, nitrogen isotherms, FTIR, and zeta potential, from which not only obtaining the best preparation conditions for producing activated carbon that possessing high surface area and pore volume, but also providing more information for the synthesis parameters on the conversion mechanism of carbon spheres into activated carbon. The adsorption capacities of the basic dye (MG5), the acid dye (AR1), the organic compound (phenol), and two heavy metal ions (Cu2+ and Pb2+) on the activated carbon were measured. Under the optimal conditions, the specific surface area (yield rate and ratio of micropore volume to total pore volume) of activated carbon derived from glucose, sucrose, and xylose reached 1611.7 (11.5 and 41.0 %), 1493.6 (19.2 and 92.4 %), and 1362.5 (10.8 and 83.8 %) m2/g, respectively. For MG5 (AR1, phenol, Cu2+, and Pb2+), the maximum adsorption capacity of activated carbon derived from glucose, sucrose, and xylose may reach 443.9 (345.7, 277.9, 58.1, 81.1), 538.0 (189.3, 267.2, 64.6, 86.6), and 599.4 (371.8, 331.9, 61.3, 91.0) mg/g, respectively. It can be experimentally concluded that the activated carbon from hydrothermal method derived carbon spheres may be an excellent adsorbent for the adsorptive removal contaminations from aqueous solution, although obtained materials do not possess the relatively larger specific surface area.

參考文獻


59. 賴怡伶,含纖維素之生物吸附劑對重金屬吸附之研究,碩士論文,中央大學環境工程研究所(2008)。
20. Wang ,Q., Li, H., Chen, L.-Q., Carbon, 2001, 39, 2211-2214.
42. Tseng, R.-L., Tseng, S.-K., Wu, F.-C., Hu, C.-C., Wang, C.-C., Chem. Eng. J., 2008, 39, 37-47.
2. Inagaki, M., Carbon, 1997, 35, 711-714.
5. Wang, Q., Li H., Chen, L.-Q., Solid. State. Ionics, 2002, 152, 43-50.

延伸閱讀