Title

氧化鋅奈米線指叉電極晶片進行血球阻抗量測之研究

Translated Titles

Study on Impedimetric Measurement of Blood Cells Using ZnO-Nanowire Interdigitated Electrodes

Authors

黃義中

Key Words

氧化鋅奈米線 ; 指叉電極 ; ZnO nanowires ; IDE

PublicationName

中原大學機械工程研究所學位論文

Volume or Term/Year and Month of Publication

2016年

Academic Degree Category

碩士

Advisor

張耀仁

Content Language

繁體中文

Chinese Abstract

摘要 在本研究中,使用印刷電路板(PCB)基板作為晶片基板,利用黃光微影製程的方法將FR4銅箔基板上的銅蝕刻出指叉電極圖案,然後利用不同光阻的特性,成功的將氧化鋅奈米線選擇性地生長在指叉電極間隙內,再利用阻抗計量測紅血球之阻抗再以奈氏圖繪製曲線以達到檢測分析的目的。實驗結果表示,氧化鋅奈米線指叉電極比沒有奈米線的指叉電極更加的靈敏,氧化鋅奈米線指叉電極可將3%紅血球溶液0.2ul體積下,可量測其阻抗數據,在微量體積變化下,亦能明顯分辨出其差異,且在取樣體積不同下,體積越大所得到阻抗值越大,也顯示了紅血球的阻抗相較於其稀釋溶液為大。 以奈米線指叉電極量測紅血球溶液阻抗時,依其奈氏圖可將其模擬成一電阻與電容之等效電路,再將溶液電阻及電雙層電容量測出來,即可得出紅血球之阻抗效應。

English Abstract

Abstract In this thesis, a printed circuit boards (PCB) was treated as the chip substrate to allow FR4 copper foil to be patterned into copper interdigitated electrodes by photolithography process. Different types of photoresists were utilized to define the location of Zinc oxide (ZnO) nanowire selectively into the gap of copper interdigitated electrodes. Electrochemical impedance of erythrocytes was detected and analyzed via impedance meter and the recorded Nyquist plot. The results show that the electrochemical impedance spectra are distinguishable and more sensitive in comparison with those of interdigitated electrodes without ZnO nanowire. ZnO nanowire interdigitated electrodes can be exercised to detect the impedance of 3% red blood solution with a trace volume of 0.2ul. In different volume levels, the value can still be detected. The increase of probe volume provides larger impedance value which indicates the blood cells have larger impedance than the solvent. The impedance value of blood cell can be obtained from measuring with the nanowire interdigitated electrodes system. A simulated equivalent circuit of resistor(s) and capacitor(s) can be derived from the recorded Nyquist plot. Following with the measured value of solution resistance and the Electrical Double-Layer capacitance, the impedance of red blood cells can be calculated by deduction.

Topic Category 工學院 > 機械工程研究所
工程學 > 機械工程
Reference
  1. [1] Y. Zhao, P. Deng, Y. Nie, P. Wang a, Y. Zhang, L. Xing and X. Xue,“Biomolecule-adsorption-dependent piezoelectric output of ZnO nanowire nanogenerator and its application as self-powered active biosensor,” Biosensors and Bioelectronics, Vol .57,pp. 269–275, 2014.
    連結:
  2. [2] J.Y. Lee, C.Y.Wang, C.F. Huang and A.T. Cheng, “Interdigitated Electrodes Based on Impedance Biosensor for Sensing Peptide LL-37,” IEEE EMBS,pp. 71-74, 2011.
    連結:
  3. [3] S.N.S. A. Ayob and U. Hashim, “The synthesis and fabrication of Titanium dioxide nanowires-based biosensor,” IEEE-ICSE,pp.145-148, 2012.
    連結:
  4. [4] Y. Hea, W. Zhangb, S. Zhanga, X. Kanga, W. Penga and Y. Xua, “Study of the photoconductive ZnO UV detector based on the electrically floated nanowire array,” Sensors and Actuators A, Vol.181, pp.6-2,2012.
    連結:
  5. [5] D. Meng, N.M. Shaalan, T. Yamazaki and T. Kikuta, “Preparation of tungsten oxide nanowires and their application to NO2 sensing,” Sensors and Actuators B, Vol.169, pp.113– 120, 2012.
    連結:
  6. [6] T. Frisk, N. Sandstrom, L. Eng, P. Mansson and F. Stemme, “An integrated QCM-based narcotics sensing microsystem,” Lab Chip, pp.1648–1657, 2008.
    連結:
  7. [7] L. C. Clark and C. Champ, “Electrode systems for continuous monitoring in cardiovascular surgery,” Ann N Y Acad Sci,Vol.102, pp. 29-45, 1962.
    連結:
  8. [8] J. Hu, Y. Shirai1, L. Han and Y. Wakayama, “Template method for fabricating interdigitate p-n heterojunction for organic solar cell,” Nanoscale Research Letters, Vol.7,pp.469, 2012.
    連結:
  9. [11] D. Meng, T. Yamazaki and T. Kikuta, “Preparation and gas sensing properties of undoped and Pd-doped TiO2 nanowires,” Sensors and Actuators B, Vol. 190, pp.838-843, 2014.
    連結:
  10. [12] Y. Wu, and P. Yang, “Direct Observation of Vapor-Liquid-Solid Nanowire Growth,” American Chemical Society, Vol. 123, pp. 3165-3166, 2001.
    連結:
  11. [13] J. Y. Park, S. W. Choi, and S. S. Kim, “Junction-Tuned SnO2 Nanowires and Their Sensing Properties,” American Chemical Society, Vol. 115, p p.12774-12781, 2011.
    連結:
  12. [14] E. Huey, S. Krishnan, S. Ary, A. Dey, and S. Bhansali, “Optimized growth and integration of silica nanowires into interdigitated microelectrode structures for biosensing,” Sensors and Actuators B , Vol. 175, pp. 29-33, 2012.
    連結:
  13. [15] L. Vayssieres, K. Keis, S. E. Lindquist, and Anders Hagfeldt, “Purpose-Built Anisotropic Metal Oxide Material: 3D Highly Oriented Microrod Array of ZnO,” American Chemical Society, Vol. 105, pp. 3350-3352, 2001.
    連結:
  14. [16] S. Ozturk, N. Kılınc, and Z. Z. Ozturk, “Fabrication of ZnO nanorods for NO2 sensor applications: Effect of dimensions and electrode position,” Journal of Alloys and Compounds, Vol. 581, pp. 196–201, 2013.
    連結:
  15. [17] L. V. Thong, N. D. Hoa, D. T. T. Lea, D. T. Viet, P. D. Tam, A. T. Le, and N. V. Hieu, “On-chip fabrication of SnO2-nanowire gas sensor: The effect of growth time on sensor performance,“ Sensors and Actuators B, Vol. 146, pp. 361–367, 2010.
    連結:
  16. [18] J. Y. Park, S. W. Choi, and S. S. Kim, “Tailoring the Number of Junctions per Electrode Pair in Networked ZnO Nanowire Sensors,” American Ceramic Society, Vol. 94, pp. 3922-3926, 2011.
    連結:
  17. [19] X. Li, E. China, H. Sun, P. Kurup, and Z. Gua, “Fabrication and integration of metal oxide nanowire sensors using dielectrophoretic assembly and improved post-assembly processing,” Sensors and Actuators B, Vol. 148, pp. 404–412, 2010.
    連結:
  18. [20] C. G. Aljaro, M. Bangar, E. Baldrich, F. J. Munoz, and A. Mulchandani, “Conducting polymer nanowire-based chemiresistive biosensor for the detection of bacterial spores,” Biosensors and Bioelectronics, Vol. 25, pp. 2309–2312, 2010.
    連結:
  19. [21] C. C. Lin, Y. M. Chu, and H. C. Chang, “In situ encapsulation of antibody on TiO2 nanowire immunosensor via electro-polymerization of polypyrrole propylic acid,” Sensors and Actuators B, Vol. 187, pp. 533– 539, 2013.
    連結:
  20. [22] M. Jacobs, S. Muthukumar, A. P. Selvam, J. E. Craven, and S. Prasad, “Ultra-sensitive electrical immunoassay biosensors using nanotextured zinc oxide thin films on printed circuit board platforms,” Biosensors and Bioelectronics, Vol. 55, pp. 7–13, 2014.
    連結:
  21. [23] B. H. Kong, and H. K. Cho,” Formation of vertically aligned ZnO nanorods on ZnO templates with the preferred orientation through thermal evaporation,” Journal of Crystal Growth, Vol. 289, pp. 370–375, 2006.
    連結:
  22. [24] J. Song, and S. Lim,” Effect of Seed Layer on the Growth of ZnO Nanorods,” J. Phys. Chem. C, Vol. 111, No. 2, 2007.
    連結:
  23. 參考文獻
  24. [9] V. A. Antohe, A. Radu, M. M. Tempfli, A. Attout, S. Yunus, P. Bertrand, C. A. Duu, A. Vlad, S. Melinte, S. M. Tempfli, and L. Piraux, “Nanowire-templated microelectrodes for high-sensitivity p H detection,” APPLIED PHYSICS LETTERS, Vol. 94, 073118, 2009.
  25. [10] Z. Liu, T. Yamazaki, Y. Shen, T. Kikuta, N. Nakatani and Y. Li, “O2 and CO sensing of Ga2O3 multiple nanowire gas sensors,” Sensors and Actuators B, Vol. 129,p p.666–670, 2008