Title

以非界面活性劑為模版合成不規則有機孔洞材料與無機中孔洞材料及其性質研究

Translated Titles

Preparation and Property Studies of the Organic Porous and Inorganic Mesoporous Materials Through the Non-Surfactant Templating Route

Authors

翁暢健

Key Words

高分子孔洞材料 ; 非界面活性劑模版法 ; 中孔洞材料 ; polymer por ; nonsurfactant template route ; Mesoporous

PublicationName

中原大學化學研究所學位論文

Volume or Term/Year and Month of Publication

2006年

Academic Degree Category

博士

Advisor

葉瑞銘

Content Language

繁體中文

Chinese Abstract

本論文是以非界面活性劑模版法為基礎,進而延伸發展到製備無機中孔洞材料與有機多孔性材料,並對所合成的材料做一系列的分析與探討。本研究論文共分為三個部份;第一部分與第二部分主要是以無機矽氧化物的中孔洞材料為主體。第三大部分則是以高分子環氧樹脂為主體的有機多孔性材料。 第一部份,是利用非界面活性劑模版法的實驗概念,以Dibenzoyl-L-tartaric acid (DBTA)當作孔洞形成劑,3-(trimethoxy silyl)propyl methacrylate) (MSMA)為修飾劑,Tetraethoxysilane (TEOS)為前驅物,在酸性條件下直接合成於修飾的中孔洞材中。傳統的中孔洞修飾方法往往對孔道造成阻塞或縮減的影響,而本實驗中利用低溫製程條件在150℃以下直接合成出表面具有活性官能基的中孔洞材料,經由氮氣吸脫附鑑定結果判斷,利用此方法所合成的中孔洞材料的孔道並沒有被修飾劑分子(MSMA)阻塞的問題發生;另外由穿隧式電子顯微鏡分析可以明顯看出所合成的孔洞材料是屬於開放式的三度空間蟲洞結構;最後,利用所合成的中孔洞材料成功的製備成壓克力/中孔洞奈米複合材料,並尋求複合材料的新應用性。 第二部份,延續非界面活性劑模版法的合成概念,將聚苯胺導電高分子巧妙的導入無機矽氧化物中孔洞材料之中。在實驗過程中採用水溶性的葡萄糖分子當作孔洞成形劑,並首次將聚苯胺乳膠水溶液導入中孔洞材料系統之中。實驗所得到樣品不僅具備中孔洞材料多孔性與高表面積等優異的特徵之外,更具備了聚苯胺導電高分子特殊的電化學活性。由氮氣吸脫附分析與穿隧式電子顯微鏡結果判斷,聚苯胺導電高分子分子鏈應該是以物理糾纏的方式纏繞於中孔洞材料的孔壁骨架之間。不僅如此,當中孔洞材料中聚苯胺含量增加時,孔徑大小與表面積等性質皆有提升的效果。 第三部份,大膽的嘗試以熱固性的環氧樹脂系統取代原本的無機矽氧化物主體, 並將非界面活性劑模版合成的概念導入環氧樹脂系統之中,成功的合成出多孔隙的高分子孔洞材料。在實驗中,我們採用環氧樹脂當作孔洞材料的高分子基材,來取代無機氧化物溶膠-凝膠法所形成的網狀交聯。在孔洞模版方面為了考慮與環氧樹脂的相容性,所以選擇以polyethyl glycol (PEG)當作孔洞成形劑。最後將水溶性的PEG分子從環氧樹脂/PEG複合材料中移除便可以得到一多孔性的環氧樹脂孔洞材料。另外,在材料結構鑑定方面除了用TEM、SEM與水銀測孔儀量孔洞的型態與特性之外,環氧樹脂孔洞材料的熱傳導性質、介電性質、光學性質與機械性質等在本論文中皆有一系列詳細的探討。

English Abstract

Abstract In this thesis, a non-surfactant templating route has been employed to prepared a series of inorganic silica mesoporous and organic epoxy multiporous materials. The detailed content can be classified into three separated sections. In sectionⅠ(chapter3), a series of organo-modify mesoporous materials have been synthesized through nonsurfactant templated sol-gel route of tetraethyl orthosilicate (TEOS) and 3-(trimethoxy silyl)propyl methacrylate) (MSMA) with Dibenzoyl-L-tartaric acid (DBTA) as a template. The MSMA functioned as modify agent with TEOS had co-condensed into three-dimensional silica framework through the Sol-Gel process. After removed the DBTA by extracted exhaustively, the organic modify mesoporous materials were obtained. The pore structure parameters of as-prepared inorganic mesoporous silica were investigated by means of nitrogen sorption isotherm and transmission electron microscopy (TEM). The results indicated that the channel of the mesoporous were not blocked by modify functional group. Physical properties of PMMA-mesoporous nanocomposite materials had also been evaluated. In sectionⅡ (chapter 4), a series of polyaniline/mesoporous nanocomposites have been synthesized through nonsurfactant templated sol-gel route of tetraethyl orthosilicate (TEOS) with D-glucose as templates. The polyaniline (PANI) polymer were incorporated into the three-dimensional silica framework through the sol-gel process to afford monolithic crack-free D-glucose-containing PANI-silica gels. After removal of the D-glucose by extracted exhaustively, Polyaniline/mesoporous nanocomposites were obtained. The pore structure parameters were investigated by means of nitrogen sorption isotherm and transmission electron microscopy (TEM). The results indicated that the mesoporous structure of the polyaniline/mesoporous nanocomposites has high surface areas and pore diameters with relatively narrow pore size distributions. The UV-visable and electric resistance were shown that Polyaniline polymer have electric activity and homogeneously distributed throughout the silica framework for all the nanocomposites. In section Ⅲ (chapter 5), a series of epoxy resin in the bulky form containing multi-porous (i.e., both macroporous and mesoporous) structures have been successfully synthesized through a non-surfactant template-assisted route. Typically, a simple thermal-curing ring opening polymerization reaction of epoxy resin was carried out in the presence of various feeding content of epoxy-compatible template molecules (e.g., PEG) to afford the formation of translucent crack-free epoxy-PEG hybrid disks. After removal of template molecules by solvent extraction, a series of opaque organic porous epoxy thermosets can be obtained. The as-prepared porous materials were then characterized by Fourier-Transformation infrared (FTIR) spectra, mercury intrusion porosimeter, transmission electron microscopy (TEM) and scanning electron microscopy (SEM). Effect of pore structures on thermal transport properties, dielectric property, optical clarity, and surface morphology of as-prepared bulky multi-porous materials was also investigated by the dielectric analyzer, UV-vis transmission spectra and atomic force microscopy (AFM), respectively.

Topic Category 基礎與應用科學 > 化學
理學院 > 化學研究所
Reference
  1. 2. T. Graham, J. Chem. Soc, 1864,17,318.
    連結:
  2. 4. R.Roy, J. Am. Ceram. Soc., 1969,52,44.
    連結:
  3. 6. H. Dislich, Glastechn. Ber., 1971,44,1.
    連結:
  4. 7. G.L. Wilkes, B. Orler and H. Huang, Polym. Bul. (Berlin), 1985,14,557.
    連結:
  5. 8. T.Saequsa, J. Macromol. Sci., Chem. A, 1991,28,817.
    連結:
  6. 14. S. Nakata, M. Kawata, M.-A. Kakimoto and Y. Imaj, J. Polym. Sic., Part A: Polym. Chem., 1993,31,3425.
    連結:
  7. 17. T. Saegusa, Pure and Appl. Chem., 1995,67,1965.
    連結:
  8. 19 . W.C. Chen ,S.J Lee, L-H Lee J. Mater. Chem.,1999,9, 2999
    連結:
  9. 22. C.L. Chian,C.C Ma, Joural of Polymer Degradation and stability
    連結:
  10. 23. I. Matsuyama, S. Satoh, M. Katsumoto, K. Susa, J. Non-Cryst. Solids, 1991,135,22.
    連結:
  11. 24. The colloid chemistry of silica 18 Brinker sol-gel processing of silica 1998,119
    連結:
  12. 26. R. Aelion, A. Loebel, F. Eirich, J. Am. Chem. Soc., 1950,72,5705.
    連結:
  13. 34. J W. McBain, The sporption of Gases and Vapor by solids,Rutledge and Sons,London, Ch. 5,1932.
    連結:
  14. 39. A .Firouzi, D.Kumar, L.M.Bull, T.Besier, P. Sieger, Q.Huo, S.A Walker, J.A.Zasadzibski, C.Glinka, J.Sicol, D.I Margoless, G.D. Stucky, B.F Chemella, Science 1995.267,1138
    連結:
  15. 45. B.P, Y.Q. Kun, Y.Wei, Microporous and Mesoporous Mater.2000.40,299
    連結:
  16. 48. Kapoor, Applied Catalysis A General,2000,203,311.
    連結:
  17. 49. Y. Shiraishi, G. Nishimura, T.Hirai, I.Komasawa, Ind.Eng. Chem.Res
    連結:
  18. 55. Kalogeras, Ioannis M , Polymer, 2003,44, 4817.
    連結:
  19. 3. S.J.Gregg, K. S. W. Sing, Adsorption, Surface Area and Porsosity, 2nd Ed., Academic Press, New York, NY, 1982.
    連結:
  20. 1. G. Kickelbick, Angew. Chem. Int. Ed. 2004, 43, 3102
    連結:
  21. 3. K. K. Unger, Porous Silica &Its Properties and Use as Support in Column Liquid Chromatography, Elsevier, Amsterdam 1979. 16,
    連結:
  22. 6. T. Ishikawa, M. Matsuda, A. Yasukawa, K. Kondori, S. Inagaki, T.
    連結:
  23. Fukushima, S. Kondo, J. Chem. Soc. 1996, 92, 1985.
    連結:
  24. Mater. 1998, 10, 161.
    連結:
  25. Science ,1997, 276, 923.
    連結:
  26. Angew. Chem. Int. Ed. 1999, 1235.
    連結:
  27. 14 S. L. Burkett, S. D. Sims, S. Mann, Chem. Commun. 1996, 1367.
    連結:
  28. 16 D. J. Macquarrie, Chem. Commun. 1996, 1961.
    連結:
  29. 21. J. H. Clark, D. J. Macquarrie, Chem. Commun. 1998, 853.
    連結:
  30. 26 Y. V. Subba Rao, D. E. De Vos, P. A. Jacobs, Angew. Chem. Int. Ed. Engl. 1997, 36, 2661.
    連結:
  31. 27 D. J. Macquarrie, Green Chem. 1999, 195.
    連結:
  32. 28 D. J. Macquarrie, Philos. Trans. R. Soc. London A 2000, 358, 419.
    連結:
  33. Science , 1997, 276, 923.
    連結:
  34. 30 Y Shiraishi , G.Nishimura, T.Hirai, I.Komasawa. Ind.Eng.Chem.Res
    連結:
  35. 31. J. S. Beck, D. C. Calabro, S. B. McCullen, B. P. Pelrine, K. D. Schmitt, J. C. Vartuli, US Patent 5 220 101, Mobil Oil Corporation, USA 1993.
    連結:
  36. Sims, S. Mann, J. Colloid Interface Sci. 1998, 201, 220.
    連結:
  37. 34. J. S. Beck, D. C. Calabro, S. B. McCullen, B. P. Pelrine, K. D. Schmitt, J. C. Vartuli, US Patent 5 220 101, Mobil Oil Corporation, USA 1993.
    連結:
  38. 37. C.G.Wu, T. Bein, Science 1994, 264, 1757.
    連結:
  39. 39. S. M. Ng, S. Ogino, T. Aida, K. A. Koyano, T. Tatsumi, Macromol. Rapid Commun. 1997, 18, 991.
    連結:
  40. 43. Price ,N.P .;Stevent ,L. Fundamentals of Enzymology second Edition (Oxford New York)
    連結:
  41. 2. H. Shirakawa, S. Ikeda. Polymer. 1971, 2, 231.
    連結:
  42. 3. (a) H. Shirakawa, E. J. Lousi, A. G. MacDiarmid, C. K. Chiang, A. J. Heeger J. Chem. Commum. 1977, 578.
    連結:
  43. 7. H. Letheby, J. Chem. Soc. 1862, 15, 161.
    連結:
  44. 8. A. G. Green and A. E. Woodhead, J. Chem. Soc. Trans. 1910, 97, 2388.
    連結:
  45. 9. L. Langer, Solid state Commum, 1978, 26, 839.
    連結:
  46. 10. A.G. Macdiarmid, J. C. Chiang, M. Halpern, W. S. Huang, S. L. Mu, N. L.D. Somasir, Mol. Cryst. Liq. Cryst., 1985, 121, 173.
    連結:
  47. 11. E. M. Genies, A. A. Syed and C. Tsintavies, Mol. Cryst. Liq. 1985, 121, 181.
    連結:
  48. 13. D. M. Mohiliner, R. N. Adams, W. J. Argersinger, J. Am. Chem. Soc. 1962, 84, 3618.
    連結:
  49. 14. M. Breitenbach, K. H. Heckner, J. Electroanal. Chem. 1971, 29, 309.
    連結:
  50. 15. M. Breitenbach, K. H. Heckner, J. Electroanal. Chem. 1971, 33, 45.
    連結:
  51. 16. E. M. Genies, M. Lapkowski, J. Electroanal. Chem. 1987, 236, 189.
    連結:
  52. 17. E. M. Genies, M. Lapkowski, J. Electroanal. Chem. 1987, 236, 199.
    連結:
  53. 26. C.G.Wu, T. Bein. Chem. Mater, 1994,6, 1109
    連結:
  54. 28. K.Moller, T.Bein, R. X. Fischer, Chem. Mater. 1998, 10, 1841
    連結:
  55. 30. E.J.Acosta, C.S.Carr, E.E.Simanek, D.F.Shantz, Adv. Mater. 2004, 16, 985
    連結:
  56. 36. Y. Kojima, T. Matsuoka, H. Takahashi, J. Appl. Polym. Sci, 1999, 74, 3254.
    連結:
  57. 38. M. S. Cho, H. J. Choi, K. Y. Kim, W.S. Ahn, Macromol. Rapid Commun. 2002, 12, 23,
    連結:
  58. 42. D. Coutinho, Z. Yang, J. P. Ferraris , K. J. B. Jr, Microporous Mater. 2005,81, 321
    連結:
  59. 4.G. Liu , J.Ding , Adv. Mater. 1998, 10, 69
    連結:
  60. 5.G. Liu, J. Ding, S. Stewart ,Angew. Chem. Int. Ed. 1999, 38, 835
    連結:
  61. 6. A. G. Loera, F. Cara, M. Dumon, J.P. Pascault, Macromolecules 2002, 35, 6291
    連結:
  62. 7. W.C.Wang, R. H. Vora, E.T. Kang, K.G. Neoh, C.K. Ong, L.F.Chen . Adv. Mater. 2004, 16, 54
    連結:
  63. 8. M. Dauben, K.H. Reichert, P. Huang, J.Fock, Polymer 1996 , 37, 2827
    連結:
  64. 14. A. D. Martina, J. G. Hilborn, A. Mu1hlebach , Macromolecules 2000, 33, 2916
    連結:
  65. 15. X. Huang, T.Ren, X. Tang. Mater. Letters 2003,57 , 4182
    連結:
  66. 17. V. I. Raman, G. R. Palmese., Colloids and Surfaces A: Physicochem. Eng. Aspects ,2004 ,241,119
    連結:
  67. 18. Y. Chen, L. Chen, H. Nie, E. T. Kang, J. Appl.Polym. Sc , 2006, 99, 2226
    連結:
  68. 19. B.M. Novak , C. Davies,, Polym. Prep., 2(3) (1991) 512.
    連結:
  69. 23.Y. Ikedam, Polymer, 1997,38, 4417.
    連結:
  70. 7.1 第一章參考文獻
  71. 1. H.M. Ebelmen, Ann. Chimie. Phys, 1846,16,129.
  72. 3. L. Royleigh, Philos. Mag., 1919,38,738.
  73. 5. R.K. Iler, The chemistry of silica, Wiley-Inter Science,1979.
  74. 9. B.M. Novak & C. Davies,Polym. Prep.,1991,32(3),512。
  75. 10. B.Wang, G.L.Wilkes, J.C. Hedrick, S.C. Liptak and J.E. Mcgrath, Marcromolecules, 1991,24,3449.
  76. 11. J.D. Mackenzie, Y.J. Chung and Y. Hu, J. Non-Cryst. Soilds., 1992,147,271.
  77. 12. Y.Wei, R. Bakthavatchalam, D. Yang and C.K. Whitecar, Polym. Prep., 1991,32(3),503.
  78. 13. Y. Wei, D. Yang and L. Tang, J. Matr. Res., 1993, 8(5),1143.
  79. 15. J. Wen and J.E. Mark, Macromol. Reports, 1994,A31,429.
  80. 16. Y.Wei and W. Wei, Am. Chem. Soc., “Hybrid Organic-Inorganic Composites”,1995,125
  81. 18. Y.Wei, J. Danliang , D. Tianzhong,W-H, S.Xinghua, L. Stephen,Z.D , F.Qiang. Adv. Mater.1998,3,4,313
  82. 20. Q.Feng, J. Xu, H. Dong, S. Li and Y.Wei J. Mater. Chem., 2000, 10, 2490
  83. 21. L.H. Lee and W.C Chen, Chem. Mater., 2001,13,1137
  84. ,2003,15,225
  85. 25. C.J. Brinker, K.D. Keefer, R.A. Assink, B.D. Kay and C.S. Ashley, J. Non-Cryst. Solids, 1984,63,45.
  86. 27. C. J. Brinker; George W. Scherer, Sol-Gel-Science p330
  87. 28. I. Matsuyama, S. Satoh, M. Katsumoto and K. Susa, J. Non-Cryst. Solids, 1991,135,22.
  88. 29. H. P. Lin and C. Y. Mou Acc. Chem. Rev.2002 ,35, 927.
  89. 30. V.L.Rao, M.C.Eshwar, G.N.Babu, J.Macromol. Sci-Chem.,
  90. 1986,A23,1079
  91. 31.Z.H.Huang, K.Y.Qiu , Y.Wei, J.Polym.Sci.1997,A53,2403
  92. 32. R.K. Iler, The Chemistry of silica (Wiley, New York 1979)
  93. 33 C. Jeffrey Brinker; W. Scherer, George .Sol-Gel-Science , p128
  94. 35. C.T. Kresge, M.E. Leonowice, W.J. Roth, J.C. Vartuli,Beck,J.S, Nature.
  95. 1992,359,710.
  96. 36. J.S.Beck, J.C.Vartuli, W.J. Roth , M.E.Leonowice , C.T.Kresge, K.D. Schmitt, C.T. Chu, D.H. Olson,E.W. SheppardS.B. Higgins, J.L. Schlenker , J.AmChem.Soc.,1992,114,10834
  97. 37. D. Zhao, J. Feng, Q. Huo, N. Melosh, G.H.Fredrickson, B.F.Chemlka, G.D.Strucky, Science 1998,279,548.
  98. 38. Y. Wei, J. Danliang, D.Tianzhong, W. Heng , L.Xinghua, Z.D.Stephen, F.Qiang, Adv. Mater.1998,3,4,313
  99. 40. Q.Huo, D.I.Margoless, U.Ciesla, P.Feng, T.E.Gier, P. Sieger, R.Leon, P.M.Petroff, F. Schuth, G.D.Stucky, Nature,1994,368,317
  100. 41. D.Y. Zhao, Q.S.Huo, J.L. Feng, B.F.Chemlka, G.D.Stucky, J.Am.Chem.Soc 1998.120.6024
  101. 42. M.S.Morey, S.OBrien, S.Schwarz, G.D.Stucky, Chem.Mater.2000,12,898
  102. 43. Y.Wei .Chem.Mater.1999,11,2023
  103. 44. Y.Wei .J.Mater.Chem,2000.10,2490
  104. 46. O.Makoto, H.Naoki, K.Yasuyoshi, Y.Ryota, Appl.cata.A 2003,241,307
  105. 47. B.L.Newalker, J.Olanrewaju, S.Komarneni, Chem.Mater.2001,13,552.
  106. 2002,41,5065.
  107. 50. C.H.Lee, T.S. Lin, C.Y.Mou. Phys.Chem.Chem.Phys,2002,4,3106.
  108. 51. S.Y.Xie, S.L.Deng, L.J.Yu, R.B.Huang, L.S.Zheng, J.Chromatogr.A.
  109. 2001,932,43
  110. 52. C.R.Silva, I.C.S.F.Jardim, C.J.Airoldi, Chromatogr.A, 2001,913.65
  111. 53. Y. Wei, X.Jigeng, F.Qiuwei, D.Hua, L.Muduo, Mater.Lett,2000,44,6
  112. 54. Y. Wei, X.Jigeng, F.Qiuwei, D.Hua, Chem.Phys.Chem.2002,9,802.
  113. 56. S. C.Min, J. C.Hyoung, Y. K. Kyong, S.Wha. Ahn. M. Rap. Comm. 2002,23, 713
  114. 57. R. Ryoo, S. H. Joo, M. Kruk, M. Jaroniec, Adv. Mater. 2001,13,677
  115. 58. M. Kruk, M. Jaroniec, T.W. Kim,R. Ryoo, Chem. Mater.2003,15,2815
  116. 7.2 第二章參考文獻
  117. 1 http://universe-review.ca/I11-41-tem.jpg
  118. 2.賴耿陽,核磁共振的基礎 ,復漢 2001,90
  119. 4. S. L. Burkett, N. H. Mendelson,S. Mann, Nature, 1997, 385, 420
  120. 5.http://en.wikipedia.org/wiki/Permittivity#Dielectric_absorption_processes
  121. 6. http://acept.la.asu.edu/PiN/rdg/elmicr/elmicr.shtml
  122. 7.3 第三章參考文獻
  123. 2. A. Stein, B. J. Melde, R.C. Schroden , Adv. Mater. 2000, 19,12
  124. 4. P. M. Price, J. H. Clark, D. J. Macquarrie, J. Chem. Soc.,
  125. 2000,101.
  126. 5. K. Moller, T. Bein, Stud. Surf. Sci. Catal. 1998, 117, 53.
  127. 7. R. Anwander, C. Palm, J. Stelzer, O. Groeger, G. Engelhardt, Stud. Surf. Sci. Catal. 1998, 117, 135.
  128. 8. J. Liu, X. Feng, G. E. Fryxell, L.Q. Wang, A. Y. Kim, M. Gong, Adv.
  129. 9. X. Feng, G. E. Fryxell, L.Q. Wang, A. Y. Kim, J. Liu, K. M. Kemner,
  130. 10.J. Liu, G. E. Fryxell, S. Mattigod, T. S. Zemanian, Y. Shin, L.-Q. Wang, in Proc. Nanoporous Materials II, Banff, Canada, May, 2000.
  131. 11 N. Bellocq, S. Abramson, M. LaspØras, D. Brunel, P. Moreau, Tetrahedron, Asymmetry 1999, 10, 3229.
  132. 12 S. Dai, M. C. Burleigh, Y. Shin, C. C. Morrow, C. E. Barnes, Z. Xue,
  133. 13. C. Sanchez, F. Ribot, New J. Chem. 1994, 18, 1007.
  134. 15 S. D. Sims, S. L. Burkett, S.Mann,Mater. Res. Soc. Symp. Proc. 1996, 431, 77.
  135. 17 Q. Huo, D. I. Margolese, G. D. Stucky, Chem. Mater. 1996, 8, 1147.
  136. 18. Victor Shang-Yi Lin, http://www.external.ameslab.gov/pbchem/PI%20info/lin.htm
  137. 19. Myong H. Lim and Andreas Stein ,Chem. Mater. 1999, 11, 3285
  138. 20. S. Inagaki, S. Guan, Y. Fukushima, T. Ohsuma, O. Terasaki, J. Am. Chem.Soc. 1999, 121, 9611.
  139. 22. M. H. Lim, C. F. Blanford, A. Stein, Chem. Mater. 1998, 10, 467.
  140. 23 W. M. van Rhijn, D. E. De Vos, B. F. Sels, W. D. Bosaert, P. A. Jacobs,Chem. Commun. 1998, 317.
  141. 24 W. van Rhijn, D. De Vos, W. Bossaert, J. Bullen, B. Wouters, P. Grobet, P. Jacobs, Stud. Surf. Sci. Catal. 1998, 117, 183.
  142. 25 W. D. Bossaert, D. E. De Vos, W. M. Van Rhijn, J. Bullen, P. J. Grobet, P. A. Jacobs, J. Catal. 1999, 182, 156.
  143. 29 X. Feng, G. E. Fryxell, L.Q. Wang, A. Y. Kim, J. Liu, K. M. Kemner,
  144. .2002,41,5065
  145. 32. C. M. Bambrough, R. C. T. Slade, R. T. Williams, S. L. Burkett, S. D.
  146. 33. C. M. Bambrough, R. C. T. Slade, R. T. Williams, J. Mater. Chem. 1998, 8, 569.
  147. 35 S.Y. Xie, S .L.Deng , L.J.Yu, R.B.Huang, L.S Zheng, J. Chromatorgr A 2001,932,43
  148. 36. J.W.Zhao, F.Gao, Y.L Fu, P .YYang, D .Y Zhao, Chem.Commun. 2002,752
  149. 38. P. L. Llewellyn, U. Ciesla, H. Decher, R. Stadler, F. Schueth, K. Unger, Stud. Surf. Sci. Catal. 1994, 84, 2013.
  150. 40. K. Moller, T. Bein, R.X. Fischer .Chem. Mater. 1999, 11, 665-673
  151. 41. Y. Wei, X. Jigeng, F.Qiuwei, D.Hua, L. Muduo, Mater.Lett,2000,44,6
  152. 42. Y. Wei, X. Jigeng, F.Qiuwei, D.Hua, Chem.Phys.Chem.2002,9,802.
  153. 44. F. Qiuwei , X.Jigeng, D. Hua, Li.Shuxi ,Y. Wei, J. Mater. Chem, 2000, 10, 2490
  154. 45. Y. Wei ,F. Qiuwei, X.Jigeng ,D. Hua , K.Y. Qiu, A. Susan, Y.Ray, K.K.Ong .Adv. Mater , 2000,19,1448
  155. 7.4 第四章參考文獻
  156. 1. D. Chapman, R. J. Warm, A. G. Fitzgerald, A. D. Yoffe J. Chem. Soc., Faraday Trans. 1964, 294,60.
  157. (b) C. K. Chiang, C. R. Fincher, Y. W. Park, A. J. Heeger, E. J. Lousi, H. Shirakawa, S. C. Gau, A. G. MacDiarmid, Phys. Rev Lett.1977, 39, 1098.
  158. 4. A. J. Epstein, A. G. MacDiarmid, ‘Polyaniline: Solutions, Film, and Oxidation State,’ Proc. Faraday Society, Faraday Trans, 1989.
  159. 5. A. F. Diaz., J. Bargon in Handbook of Conducting Polymers, T. A. Skotherim Ed.; Marcel Deckker: New York, 1986, 1, 82.
  160. 6. H. Nakanishi, H. Matsuda (Research Institute of polymers and textiles), “conductive polymers”, Reported in a Journal issued by Business & Technology. 1987..
  161. 12. Y.Wei, C. Yang, G. Wei. G, Feng, Synth. Met. 1997, 84, 289.
  162. 18. Y. Wei, C. Yang, G.Wei, G. Feng, Synth. Met. 1997, 84.289.
  163. 19. 薛敬和.高分子化學實驗法 p170.
  164. 20. L. M.Gan, C. H.Chew, S. H.Seow, Mater. Chem. 1993, 11, 1109.
  165. 21. J. E.Osterholm, Y.Cao, F.Klavetter, P.Smith, Polymer 1994, 35, 2902.
  166. 22. L. M.Gan, L. H. Zhang, H. S. O.Chan, C. H.Chew, Materials Chemistry and Physics ,1995, 40, 94.
  167. 23. P. J.Kinlen, J.Liu, Y.Ding, C. R. Graham, E. E.Remsen, Macromolecules 1998, 31, 1735.
  168. 24. 林怡君;邱文英;王立義Proceedings of the 23rd ROC Polymer Symposium 2000, 282.83
  169. 25. S. A.Chen, M. Y.Hua, Proceedings of the 23rd ROC Polymer Symposium 2000, 242.
  170. 27. C.G.Wu, T. Bein. Science, . 1994 ,17,264.
  171. 29. T.Q.Nguyen, J.J.Wu, V. Doan, S.H.Schewartz, Science. 2000, 288, 652
  172. 31. M. Choi, F. Kleitz, D.Liu, H. Y. Lee, W.S. Ahn, R. Ryoo, J. AM. Chem. Soc. 2005, 127, 1924
  173. 32. K.Moller, T. Bein, R. X. Fischer, Chem. Mater., 1999, 11, 3.
  174. 33. Q. Feng, J. Xu, H. Dong, S.Li , Y. Wei, J. Mater. Chem, 2000, 10, 2490
  175. 34. Y. Wei ,Q. Feng, J. Xu, H. Dong, S. Li, Adv Mater.2000, 12, 1448
  176. 35. Y.S. Kang, H. I. Lee, Y. Zhang, Y. J. Han, J. E. Yie, G. D. Stuckya, J. M. Kim, Chem. Commu, 2004, 1524
  177. 37. N. Wang, M. Li, J. Zhang, Mater. Lettetrs, 2005, 59,2685
  178. 39. H. Xi, B. Wang, Y. Zhang, X. Qian, J. Yin, Z. Zhu, J. Phys. Chem. Sol. 2003, 64, 2451
  179. 40. F. M´ arquez, R. R. Malherbe, J. Ducong´e , W. del Valle; Surf. Interface Anal. 2004,36, 1060
  180. 41. N. Li, X. Li, W. Geng, T. Zhang, Y. Zuo, S. Qiu, J. Appl.Polym.Sci., 2004, 93,1597
  181. 43. T. Takiro, K.Yoshimura, Y. Yonesaki, N. Kumada, N. Kinomura; J. Porous Mater. 2005,12, 337
  182. 7.5 第五章參考文獻
  183. 1. I. M. Abrams, US Patent 1964,3 122 514
  184. 2. H. Corte, E. Meier, US Patent 1971,3 586 646
  185. 3.E. F. Meitzner, J. A. Olin, US Patent 1980, 4 224 415.
  186. 9 .J. Kiefer, J. G. Hilborn, J. L. Hedrick, H. J. Cha, D. Y. Yoon , J. C. Hedrick, Macromolecules 1996, 29, 8546
  187. 10. J. Kiefer, J. G. Hilborn, J. A. E. Manson, Y. Leterrier, Macromolecules 1996, 29, 4158
  188. 11. F. Svec, J. M. J. FrØchet, Anal. Chem, 1992, 64, 820.
  189. 12. J. M. J. Frechet, F. Svec, US Patent 1994, 5 334 310
  190. 13. E. C. Peters, F. Svec, J. M. J. Frechet. Adv. Mater. 1999, 11, 1169
  191. 16. T. Ren, J. Ren1, X. Tang . Polym Int, 2005,54,185
  192. 20. Schrade, Resins from Epichlorohydrin, Kunststoffe, Vol.43, 1953.
  193. 21. P. Castan, CIBA Co., Swiss.211116, (1937).
  194. 22.王德中,環氧樹脂生產 第二版 ,16.
  195. 24. J.Macan, H.Ivankovic, M.Ivankovic, H.J.mencer, J. Appl. Polym. Sci. 2004,92,49
  196. 25. D. Chapman, R. J. Warm, A. G. Fitzgerald, A. D. Yoffe,, J. Chem. Soc., Faraday Trans., 1964,60, 294.
  197. 26. S. Verheyen , N. Blaton , R. Kinget , G. Van den Mooter
  198. International Journal of Pharmaceutics, 2002,249, 45
  199. 27. H. Larhirib, J.I.Well, M.H.Rubinstein, G.Ricart. International Journal of Pharmaceutics 1997,147, 187
Times Cited
  1. 徐偉倫(2011)。電活性環氧樹脂/中孔洞二氧化矽球奈米複合材料的合成與物性鑑定。中原大學化學研究所學位論文。2011。1-112。 
  2. 邱文玲(2007)。二氧化矽粒子之中孔洞性質在聚苯乙烯/二氧化矽奈米複合材料之效應。中原大學化學研究所學位論文。2007。1-95。
  3. 徐健華(2013)。聚苯胺/二氧化矽界孔複合材料及有機酸摻雜聚亞醯胺薄膜之製備、鑑定與應用研究。中原大學化學研究所學位論文。2013。1-147。