Translated Titles

Preparation and Properties of the Dye-Sensitized Solar Cells based on High Surface Area Titanium Oxide



Key Words

二氧化鈦 ; 染敏太陽能電池 ; 染料敏化 ; dye sensitized solar cell ; mesoporous tio2



Volume or Term/Year and Month of Publication


Academic Degree Category




Content Language


Chinese Abstract

本論文主要先自製高表面積之中孔洞二氧化鈦粒子(T10),以供製備染料敏化太陽能電池(Dye-Sensitized Solar Cells, DSSCs)之工作電極使用及研究其性質,並與市售之二氧化鈦粒子(P25)所組成之DSSCs的光電流效應相比較。 實驗顯示,本研究所製備的T10表面積為市售P25的七倍之多,以此二種不同表面積之二氧化鈦粒子為材料探討不同的變因(含:TiCl4處理、染料吸附量、染料濃度、及染料吸附時間等)製備之工作電極,對DSSCs轉化效率之影響。結果得知,以T10為材料所製備之工作電極經過TiCl4的處理之後,不但可以改善電極表面的孔隙缺點,組裝成DSSCs之後也呈現出優於P25的轉換效率與閉路電流的數值。另外,比對TEM、BET與DSSCs的I-V測量結果得知,T10電極具有毛細現象的作用,其染料吸附速度較P25快且吸附量較多,進而有效提升DSSCs的閉路電流與轉換效率。綜合各項實驗結果顯示,自製二氧化鈦之高表面積有助於提升DSSCs整體的效能。

English Abstract

In this study, a home-made mesoporous titanium oxide powder (T10) was prepared and used as the working electrode material to prepare the Dye Sensitized Solar Cells (DSSCs). The photovoltaic properties of the as-prepared DSSCs were studied and compared with that of the DSSCs prepared with the commercial TiO2 nanoparticles, P25. It was found that the surface area of T10 was six times larger than that of P25 nanoparticles. The effect of various parameters, which included thickness of titanium oxide thin film, concentration of dye solution, immersing time and TiCl4 treatment, on the efficiencies of the DSSCs prepared by T10 and P25 was investigated. The results showed that the efficiency of the as-prepared DSSC was increased by treatment of TiCl4, increasing thickness of TiO2 film, enlarging dye concentration and prolonging dye immersing time. In all, The efficiencies of the T10-based DSSCs were higher than the P25-based DSSCs. This was mainly ascribed to the morphology and the high surface area of T10 nanoparticles.

Topic Category 基礎與應用科學 > 化學
理學院 > 化學研究所
  1. [3] A. Lin, X.J. Wong, Y.X. Li, L. Chou, J. Solar Energy Materials & Solar cells, 62 (2000), 149-155.
  2. [9] Hollands, K.G.T, Solar Energy, 54(1995), 1-2.
  3. [10] K. A. Bertness, Sarah R. Kurtz, D. J. Friedman, A. E. Kibbler, C. Kramer, and J. M. Olson, Applied Physics Letters, 65(1994), 989-991
  4. reactive titanium oxide photocatalysts operating under visible light
  5. [16] W. Choi, A. Termin and Michael R. Hoffmann, “The role of metal ion dopants in quantum-sized TiO2: Correlation between photoreactivity and charge carrie .
  6. [17] M.I. Litter, J.A. Navío, “Photocatalytic properties of iron-doped titania semiconductors” J. Photochem. Photobiol. A: Chem. 1996(98) 171-181.
  7. [18] S. Klosek and D. Raftery, “Visible light driven V-doped TiO2 photocatalyst and its photooxidation of ethanol” J. Phys. Chem. B 2001(105) 2815-2819.
  8. [19] H. Yamashita, M. Harada, J. Misaka, M. Takeuchi, B. Neppolian, M. Anpo, “Photocatalytic degradation of organic compounds diluted in water using visible light-responsive metal ion-implanted TiO2 catalysts: Fe ion-implanted TiO2” Catalysis Today 2003(84) 191-196.
  9. [20] P. Serp, P. Kalck, R. Feurer, “Chemical Vapor Deposition Methods for the Controlled Preparation of Supported Catalytic Materials” Chem. Rev. 2002(102) 3085-3128.
  10. [21] Tada et al., “Deactivation of the TiO2 Photocatalyst by Coupling with WO3 and the Electrochemically Assisted High Photocatalytic Activity of WO3” Langmuir 2004(20) 4665-4670.
  11. [22] G. Marcì, V. Augugliaro. etc., “Preparation Characterization and Photocatalytic Activity of Polycrystalline ZnO/TiO2 Systems. 1. Surface and Bulk Characterization” J. Phys. Chem. B 2001 (105) 1026-1032.
  12. [31] Kyung Hyun Ko, Young Cheol Lee., Young Jin Jung, “Enhanced efficiency of dye-sensitized TiO2 solar cells (DSSC) by doping of metal ions”, J. Colloid and Interface Science 283 (2005) 482–487.
  13. for the Controlled Preparation of Supported Catalytic Materials”
  14. Chem. Rev. 2002(102) 3085-3128
  15. [24] H. Tada, K. Teranishi, Y. Inubushi and S. Ito, “Ag nanocluster loading effect on TiO2 photocatalytic reduction of bis(2-dipyridyl) disulfide to 2-mercaptopyridine by H2O” Langmuir 2000(16) 3304-3309
  16. [25] X. Z. Li and F. B. Li, “Study of Au/Au3+-TiO2 photocatalysts toward visible photooxidation for water and wastewater treatment” Environ. Sci. Technol. 2001(35) 2381-2387
  17. [26] Vaidyanathan Subramanian, Eduardo E. Wolf, and Prashant V. Kamat, “Catalysis with TiO2/gold nanocomposites. Effect of metal particle size on the fermi level equilibration” J. Am. Chem. Soc. 2004(126) 4943-4950
  18. [27] M. Tada, Y. Yamashita, V. Petrykin, M. Osada, K. Yoshida and M. Kakihana, “A new water-soluble ammonium citratoperoxotitanate as an environmentally beneficial precursor for TiO2 thin films and RuO2/BaTi4O9 photocatalysts” Chem. Mater. 2002(14), 2845-2846
  19. [29] J.J.M. Halls, C. A. Walsh, N.C. Greenham, E.A. Marseglia, R.H. Friend, S.C. Moratti and A.B. Holmes, Nature, 376(1995), 498
  20. [30] A.J. Breeze, Z. Schlesinger and S.A. Carter, Physical Review,
  21. 64(2001), 125205.
  22. [32] M. Spath, T.B. Meyer, “New concepts of nano—crystalline organic photovoltaic devices”, Solaronix.
  23. [33] Anuradha M. Biswas*, “Charge recombination and transport in dye sensitized TiO2 photovoltaic devices”, IEEE, 2000.
  24. [34] Y. Tsuge, K. Inokuchi, K. Onozuka, O. Shingo, S. Sugi, M. Yoshikawa, S. Shiratori, “Fabrication of porous TiO2 films using a spongy replica prepared by layerby-layer self-assembly method: Application to dye-sensitized solar cells”, Thin Solid Films, 499 (2006) 396 – 401.
  25. [35] A. S. Barnard, L.A Curtiss, “Prediction of TiO2 Nanoparticle Phase and Shape Transitions Controlled by Surface Chemistry”, Nano Letters, (2005) 1261-1266.
  26. [36] J.J Pietron, D. R. Rolison, “Improving the efficiency of titania aerogel-based photovoltaic electrodes by electrochemically grafting isopropyl moieties on the titania surface”, J. non-crystalline solids, (2004) 107-112.
  27. [37] S. Nakade, M. Matsuda, S. Kambe, H.Mori, “Dependence of TiO2 Nanoparticle Preparation Methods and Annealing Temperature on the Efficiency of Dye-Sensitized Solar Cells”, J. Phys. Chem. B, (2002)10004-10010
  28. [38] Y. Saito, S. Kambe, T. Kitamura, Y. Wada, S. Yanagida, “Morphology control of mesoporous TiO2 nanocrystalline films for performance of dye-sensitized solar cells”, Solar Energy Materials & Solar Cells, (2004)1-13.
  29. [39] K.S. Liu, H.G. Fu, K. Shi, F.S. Xiao, L.Q. Jing, B.F. Xin, “Preparation of Large-Pore Mesoporous Nanocrystalline TiO2 Thin Films with Tailored Pore Diameters”, J. Phys. Chem. B, (2005) 18719-18722.
  30. [40] Andreas Hinsch*, “Long-term stability and efficiency of dye-sensitized solar cells” , Prog. Photovolt: Res. Appl., 2001;9:425-438
  31. dye-sensitized solar cells”, Solar Energy Materials & Solar Cells.
  32. [1] M.Gratzel, Nature, 403(2000), 363.
  33. [2] 查丁壬彙編, “認識太陽能電池”中華太陽能聯誼會 2003
  34. [4] http://www.nsc.gov.tw/dept/acro/version01/battery/database/types/
  35. solar.htm電池資訊網
  36. [5] 林建志, 無機-有機材料太陽能電池之光電性質研究, 國立台北科技大學化工研究所, 2003年6月.
  37. [6] 張芳碩, 染料敏化二氧化鈦光電化學太陽能電池之研究, 國立台灣大學化學研究所, 2003年7月.
  38. [7] Kensuke Nishiokaa, Tatsuya Takamotob, Takaaki Aguib, Minoru Kaneiwab, Yukiharu Uraokaa, Takashi Fuyuk, J. Solar Energy Materials & Solar cells, 90 (2006), 57–67
  39. [8] M.Gratzel, Nature, 414(2001), 338-344.
  40. [11] Tatsuya Takamoto, Eiji Ikeda, Hiroshi Kurita, Masamichi Ohmori, Applied Physics Letters, 70(1997), 381-383
  41. [12] Y. Tawada, H. Okamoto, Y. Hamakawa, Applied Physics Letters, 39(1981), 237-239.
  42. [13] T. Sawada, N. Terada, S. Tsuge, T. Baba, T. Takahama, 1219-1226.
  43. [14] 彭懷夫, 中孔性二氧化鈦薄膜於染料敏化太陽能電池之應用, 國立東華大學化學研究所, 2004年6月.
  44. [15] M. Anpo, M. Takeuchi, “The design and development of highly
  45. irradiation” Journal of Catalysis 2003(216) 505-516.
  46. [23] P. Serp, P. Kalck, R. Feurer, “Chemical Vapor Deposition Methods
  47. [28] D.Braun and A. J. Heeger, Appl. Phys. Lett., 58(1991), 1982.
  48. [41] Liduo Wang*, Yong Qiu*, “Review of recent progress in solid-state
  49. 2006.
Times Cited
  1. 韓繼中(2010)。以離子熔液為模板製備中孔洞二氧化鈦(MTO) 1. MTO的製備及其性質之研究 2. MTO在染料敏化太陽能電池之應用研究。中原大學化學研究所學位論文。2010。1-234。