以水生植物從受污染底泥中移除重金屬 的探討

Translated Titles

A Study of Removal of Heavy Metals from Contaminated Sediments Using Aguatic Plants





Key Words

火焰式原子吸收光譜法 ; 舖地黍 ; 底泥 ; 重金屬 ; 河川復育 ; torpedograss. ; Flame atomic absorption spectrometry ; river restoration technique ; heavy metal remediation ; Panicum repens L.



Volume or Term/Year and Month of Publication


Academic Degree Category




Content Language


Chinese Abstract

本研究是以桃園縣某工業區內承受水體為對象,對底泥及周遭主要生長植物舖地黍(Panicum repens L.)之根、莖、葉、節進行重金屬含量分析,以了解此環境遭受污染之程度,並探討舖地黍(Panicum repens L.)是否可作為吸附體,具有吸附重金屬能力。河底污泥及沉積物中重金屬是以酸消化法及事業廢棄物毒物特性溶出程序進行萃取;對舖地黍則是以高溫碳化法進行重金屬萃取,之後利用火焰式原子吸收光譜法檢測樣品中銅、鋅、鎳、鉻、鉛、鎘、銀、錳、鐵等九種重金屬含量。檢測時所建立之檢量線須作週期性之查核,以確認標準溶液之穩定度在相對誤差值 ± 10%以內;而同日間和異日間分析之相對標準偏差結果低於10%。 本研究結果顯示: (1)發現該區域底泥受重金屬銅、鋅、鉻、鉛等污染。 (2)舖地黍根部對重金屬銅、鎳、鉛吸收累積量之能力具顯著性;而植物地上部(莖、葉、節部位)對於重金屬鋅、鉻、錳、鐵吸收能力較根部具顯著性,但舖地黍對於銀之吸收能力卻不顯著。 (3)比較整株舖地黍中重金屬累積吸收量與底泥重金屬含量之相關性,發現舖地黍吸收重金屬鉻效果最佳,其次為銅。 本研究對植物吸附重金屬相關性及重金屬累積吸收量予以探討並說明舖地黍(Panicum repens L.)對富含重金屬銅、鉻之底泥可以說是一良好植物淨化體。藉此不僅可對河川復育技術之機制更清楚瞭解,以期對植物復育技術之處理機制提供參考,作為日後國內選擇底泥重金屬污染整治技術考量參考因素之一。

English Abstract

The goals of this research is to investigate the extent of heavy metal pollution in an industrial park located at Tao-yuan County, Taiwan, and to study the possibility of using a common plant, torpedograss (Panicum repens L.), for phytoremediation of heavy metal pollution in Taiwan. Samples of water and sediment of a small river were collected, as well as the roots, stems, and leaves of torpedograss, and analyzed for the contents of nine heavy metals. The extraction of heavy metals from river sediment was treated with acid digestion method and Toxicity Characteristics Leaching Procedure (TCLP). Water samples were filtered and analyzed directly. The various parts of torpedograss were carbonized under high temperature and treated with concentrated nitric acid to extract the heavy metal ions. Flame atomic absorption spectrometry (FAAS) was utilized to measure the concentrations of copper, zinc, nickel, chromium, lead, cadmium, silver, manganese, and iron. Periodic validation of the calibration curve was performed to confirm the stability of the standard solution to be within ±10% of the actual value. Relative standard deviations (RSDs) of the interday and intraday analyses were all below 10%. The research results showed that the river sediment was polluted with copper, zinc, chromium, and lead. The cumulative absorption abilities of the roots of torpedograss to copper, nickel, and lead were significant and the contents of zinc, chromium, manganese, and iron in the stems, leaves, and burl of torpedograss were more than those in roots. However, the absorption of silver by torpedograss was not significant. The relationship of the heavy metal contents between the torpedograss and the river sediment revealed that torpedograss had the best absorbency for chromium, and secondary for copper. According to these preliminary results, we postulate that torpedograss may be a good candidate for treating soils and sediments that are polluted with chromium and copper.

Topic Category 基礎與應用科學 > 化學
理學院 > 化學研究所
  1. 1. Kokovides K., Loizidou M., Harhlamabous K. J. and Moropoulou T.(1992)Environmental study of the Marines Part I: A study on the pollution in marinas area, Environment Technology, 13:239-244.
  2. 2. Maillacheruvu K. and Safaai S. (2002) Naphthalene removal from aqueous systems by Sagittarius sp, Journal. Environment Science Health, A37(5): 845-861.
  3. 3. Ute Kra mer (2005)Phytoremediation: novel approaches to cleaning up polluted soils, Current Opinion in Biotechnology,16:133–141
  4. 7.李春樹,2003,銅鋅鉛在污染土壤中之化學型態及其萃取性研究,國立成功大學環境工程學系博士論文
  5. 8. Salt D.E.,Prince R. C.,Pickering I. J.,(2002)Chemical speciation of accumulated metals in plants: evidence from X-ray absorption spectroscopy,Microchemical Journal,71(2-3):255-259.
  6. 9. Richmond K. E.,Sussman M.,(2003)Got silicon? The non-essential beneficial plant nutrient,Curent Opinion in Plant Biology,6(3):268-272.
  7. 11. Clotiled B. and Alain C. M. B. (1995) Trends in the Heavy Metal Content (Cd, Pb, Zn) of River Sediments in the Orainage Basin of Smelting Activity, Wat. Res., 29( 7): 1729-1736
  8. 12. Williams D. E., Vlamis J., Pukite A. H. and Corey J. E. (1980)Trace element accumulation, movement, and distribution in the soil profile from massive applications of sewage sludge, Soil Science, 129:119-132
  9. 15.Alloway B. J.(1990) Heavy metals in soils, John Wiley and Sons,New York, U.S., 29-39.
  10. 17. Salt D. E., Blaylock M., Kumer N.P.B.A., Dushenkov V., Ensley B.D.,Chet I., and Raskin I.(1995) Phytoremediation: A novel strategy for the removal of toxic metals from the environment using plant, Biotechnology 13:468-474
  11. 19. Salt D. E., Smith R. D. and Raskin I.(1998)Phytoremediation. Annu. Rev. Plant Physiol. Plant Mol. Biological, 49: 643-668
  12. 22.Dickinson N. M., Pulford I. D. (2005)Cadmium phytoextraction using short-rotation coppice Salix: the evidence trail, Environment International , 31(4): 609-613
  13. 23. Garbisu C., Alkorta I.(2001)Phytoextraction: a cost-effective plant-based technology for the removal of metals from the environment, Bioresource Technology, 77: 229-236.
  14. 24. Abia A.A., Horsfall Jr M., Didi O. (2003) The use of chemically modified and unmodified cassava waste for the removal of Cd, Cu and Zn ions from aqueous solution, Bioresource Technology , 90(3):345-348
  15. 25.Mench M. and Martin E. (1991) Mobilization of cadmium and other metals from two soils by root exudates of Zea may L., Nicotiana tabacum L. and Nicotiana rustica L., Plant Soil. 132:187-196.
  16. 26.Emst,W.H.O.(1996),Bioavailability of heavy metals and decontamination of soils by plants,Applied Geochemistry, 11 (1-2):163-167
  17. 28. Allen M. F. (1992) Mycorrhizal functioning: An integrative plant- fungal process. Chapman and Hall, New York. 65-101, 301-332.
  18. 30. Abdul G. K. (2005) Role of soil microbes in the rhizospheres of plants growing on trace metal contaminated soils in phytoremediation,Journal of Trace Elements in Medicine and Biology ,18:355-364
  19. 31. Römheld V, Marschner H. (1986)Evidence for a specific uptake system for iron phytosiderophores in roots of grasses, Plant Physiol,80:175-80.
  20. 32.Meharg A. A. and Cairney J. W. G. (2000) Ectomycorrhizas - extendingthe capabilities of rhizosphere remediation? Soil Biology and Bio- chemistry32:1475-1484.
  21. 33.Terry M.I.(2003) Phytoremediation of Heavy Metals from Soils. In:Biochemical Engineering/Biotechnology, 78:97 – 123
  22. 36.Pulford I.D.,Watson C.(2003),Phytoremediation of heavy metal-contaminated land by trees—a review, Environment International ,29( 4 ): 529-540
  23. 37.Kumar P. B. A. N., Dushenkov V., Motto H., and Raskin I. (1995)Phytoexteraction: The use of plant to remove heavy metals from soils, Environment Science Technology ,29:1232-1238.
  24. 38.Rai U. N., Sinha S., Tripathi R. D. and Chandra P.(1995)Waste water treatability potential of some aquatic macrophytes: Removal of
  25. 46. Carasek E. (2000) A low-cost flame atomic absorption spectrometry method for determination of trace metals in aqueous samples, 51:173-178
  26. 47. Kenkel J.(2003) Analytical Chemistry for Technicians, CRC PRESS Inc.,New York, 3rd ed.
  27. 4. 葉顓銘、陳少燕、黃定鼎、黃浩仁,2004年,清理重金屬的植物,生命科學,8月380期44~49頁
  28. 5.Wu, F. Y. and E. J. Sun. (1998) Effects of Copper, Zinc, Nickel,Chromium and Lead on the growth of water convolvulus in water culture. Environ. Prot. 21(1):63-72.
  29. 6. Moser-Veillon P.B. (1995),Analyst,120,895
  30. 10. 王一雄、陳尊賢、李達源,1995,土壤污染學,國立空中大學,台北。
  31. 13. 王一雄,1997,土壤環境污染與農藥,明文書局,台北。
  32. 14.朱德明,1990,植物與環境逆境,國立編譯館,台北。
  33. 16. 廖光裕教授,91年3月,酸洗淋洗復育重金屬污染農地案例,環保訓練雙月刊
  34. 18. Chaney R.L., Malik M., Li Y.M., Brown S.L., Brewer E.P., Angle J.S., and Baker A.J. (1997) Phytoremedeiation of soil metals, Current Opinion in Biotechnology, 8:279-284.
  35. 20. 黃小林,土壤重金屬污染整治技術-再談植物復育法, 92年1月,環保訓練雙月刊
  36. 21.葉琮裕,農地重金屬污染整治技術----植物復育法,91年7月,環保訓練雙月刊,第61期
  37. 27.陳尊賢,2000,土壤整治技術國際會議報告,科學發展月刊,第29卷第3期,207-210
  38. 29. Anderson T. A., Guthrie E. A. and Walton B. T. (1993) Bioremediation in the Rhizosphere. Environmental Science and Technology 27: 2630-2636.
  39. 34.Dushenkov V,Kumar NP,Motto H, and Raskin I (1995) Environment Science Technology 29:1239
  40. 35. 郭毓仁,2002,草地環境的生態潛力與復育,城鄉環境景觀生態規劃設計與實務研討會,43-51.
  41. heavy metals, Ecological Engineering 5: 5-12.
  42. 39.鍾錠全,2003,青草世界彩色圖鑑(二),台北,48-49
  43. 40. 張永仁、楊宗愈,2002,野花圖鑑-台灣四百多種常見野花生態圖鑑,遠流台灣館,台北,21
  44. 41.黃秀蓮、張大年、何燧源,2002,環境分析與監測,科技圖書,台北,181-188
  45. 42.Francis R.,Annick R.(2000),Chemical analysis modern instrumentation and techniques,Wiley,257-258,New York
  46. 43.李得响、李得元、方嘉德、姜仁章譯,1995,基礎分析化學第七版(下冊),美亞書版,台北,637-639
  47. 44. Deng-Lin Hwang, (1994) ,The Appliment of atomic absorption spectrometry in Heavy Metals, Printing Technology, 10(3): 32-41
  48. 45. Douglas A. Skoog F.James H., Timothy A.Nieman, (1998) Principles of Instrumental Analysis, Fifth Edition,15-18
  49. 48. Harris D. C. (2000), Exploring Chemical Analysis, W. H. Freeman and Company, New York, 2nd ed..
  50. 49.吳先琪,1998,土壤污染危害知多少,台灣的土壤污染專輯,5月341期
  51. 50.陳尊賢、駱尚廉、吳先琪,1994,桃園鎘污染農業土壤之綜合性再分析與評估,行政院科技顧問組委託計畫期中報告,72 頁。
  52. 51. 許文昌,國家公園非生物環境因子之監測,大漢技術學院,39-67
Times Cited
  1. 石偉成(2007)。河川及其出海口海域毒性污染物分佈與牡蠣生物累積關係之研究。元智大學化學工程與材料科學學系學位論文。2007。1-225。 
  2. 林旻秀(2012)。鉛污染土壤特性探討及不同整治技術之研究。朝陽科技大學環境工程與管理系學位論文。2012。1-181。