Title

以分子動力學分析奈米多層膜Au/Cu的機械性質與變形機制

Translated Titles

Analysis of mechanical properties and deformation mechanism of multilayered Au/Cu films using molecular dynamics simulations

Authors

江文翔

Key Words

分子動力學 奈米多層膜 奈米拉伸 奈米壓縮 奈米壓痕 ; Molecular dynamics Nanotension Nanocompression Nanoindentation

PublicationName

中原大學機械工程研究所學位論文

Volume or Term/Year and Month of Publication

2017年

Academic Degree Category

碩士

Advisor

吳政達

Content Language

繁體中文

Chinese Abstract

本文是以分子動力學法則探討奈米多層膜Au/Cu之機械性質,本文分成三大部份,分別是奈米拉伸、奈米壓縮和奈米壓痕。三大部份又分別探討三種效應:層數、速度以及溫度,並從所有的模擬試驗觀察內部結構變化。結果顯示奈米多層膜Au/Cu的材料強度會隨著層數的增加而增強;拉伸速度效應則是發現拉伸速度過快可能會使模型無法生成差排釋放應力,並直接進行破裂現象、拉伸溫度效應則是溫度越高的模型內部原子的能量越高,能量越高的模型結構越容易形成無次序性的結構;壓縮模擬試驗發現層數增加模型可以有效的釋放應力使材料可以繼續進行壓縮,速度效應發現速度過於快速會導致模型內部累積缺陷過快,並導致無法釋放應力,提早模型過壓縮;壓痕模擬試驗發現壓痕器接觸最上面一層的是Cu層的話模型硬度較高,而接觸的是Au層則是較低,改變壓痕器下降速度,壓痕器速度快模型中生成缺陷的結構改以無次序結構為主,而差排數量反而下降,改變溫度不太能改變模型材料的強度。

English Abstract

In this study, the mechanical properties of nano-multilayer Au/Cu are investigated by molecular dynamics. This article divided into three parts: tension, compression, and indentation. The multilayers, speed, and temperature effects are investigated. In addition, the structure deformations are examined. The result show that strength and yielding of material increasing with increasing the number of layers in tension experiment. For the tensile speed effect, a higher tensile speed suppresses the formation of dislocation for releasing the stress. The temperature effect shows that the energy increases with increasing temperature. The model of structure is present by other structure. The proportion of other structure is more than HCP and FCC structure; Next, The compression simulation tests show that increase of layer number can release the stress from model. The compression speed effect show that the defect is rapidly accumulated, causing it cannot release the stress to fast in the model and the model will be fast cracked; Finally, indentation simulation tests find that the model with Cu surface has a higher hardness than that Au with surface. The speed effect show that the other structure is higher rate when the indentation has been indented with high speed. We also find out the dislocation is decreased when the other structure is increased. The temperature effect show that the model’s hardness can’t be changed by temperature.

Topic Category 工學院 > 機械工程研究所
工程學 > 機械工程
Reference
  1. W. K. Lee, Z. Dai, W. P. King, P. E. Sheehan. “Maskless nanoscale writing of nanoparticle-polymer composites and nanoparticle assemblies using thermal nanoprobes,” Nano Lett., 10, 129-133, (2010)
    連結:
  2. S. H. Kang, T. H. Fang, L. Riccobono, G. Carbone, “Ferromagnetic properties of hybrid cementite and diamond nanocomposite,” Smart Science, 1(2), 69-74, (2013)
    連結:
  3. C. Klein, J. Klikovits, L. Sziksazi, E. Platzgummer, H. Loeschner, “Projection mask-less lithography (PML2) ,” Microelectron. Eng, 87, 1154-1158, (2010)
    連結:
  4. T. H. Fang, C. I. Weng, J. G. Chang, “Machining characterization of the nano-lithography process using atomic force microscopy,” Nanotechnology, 11, 181-187, (2000)
    連結:
  5. T. H. Fang, J. H. Wu, “Molecular dynamics simulations on nanoindentation mechanisms of multilayered films,” Computational Materials Science, 43, 785-790, (2008)
    連結:
  6. T. H. Fang, W. Y. Chang, J. J. Huang, ”Dynamic characteristics of nanoindentation using atomistic simulation,” Acta Mater., 57, 3341-3348, (2009)
    連結:
  7. T. H. Fang, C. H. Liu, D. M. Lu, L. M. Kuo, “Analysis and nanomold design for aluminum nanoimprinting,” Smart Science, 2, 168-172, (2014)
    連結:
  8. J. E. Jones, “On the determination of molecular fields. I. from the variation of the viscosity of a gas with temperature,” Proceedings of the royal society London, 106, 441-463, (1924)
    連結:
  9. J. H. Irving and J. G. Kirkwood, “The statistical mechanical theory of transport processes. IV. the equations of hydrodynamics,” J. Cem. Phys., 18, 817-823, (1950)
    連結:
  10. N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, E. Teller, “Equation of state calculations by fast computing machines,” J. Chem. Phys., 21, 1087-1092, (1953)
    連結:
  11. B. J. Alder, T.E. Wainwright, “Studies in molecular dynamics. I. General Method,” Chem. Phys., 31, 459-468, (1959)
    連結:
  12. L. A. Girifalco and V. G. Weizer, “Application of the Morse Potential Function to Cubic Metals,” Phys. Rev., 114, 3, (1959)
    連結:
  13. A. Rahman, “Correlations in the motions of atoms in liquid atom,” Phys. Rev., 136A, 405-411, (1964)
    連結:
  14. L. verlet, “Computer ‘Experiments’ on classical fluidsⅡ, equilibrium correlation function,” Phys. Rev, 165, 201-214, (1968)
    連結:
  15. K. T. Lim, S. Brunett, “Molecular dynamics for very large systems on massively parallel computers: The MPSim program,” J. Comput. Chem., 18, 14, 501-521, (1997)
    連結:
  16. D. Roccatano, R. Bizzarri, “Development of a parallel molecular dynamics code on SIMD computers: algorithm for use of pair list criterion,” J. Comput. Chem., 19, 7, 685-694, (1998)
    連結:
  17. S. Toyoda, H. Miyagawa, “Development of MD engine: High-Speed Acceleration with Parallel Processor Design for Molecular Dynamics Simulation,” J. Comput. Chem., 20, 2, 185-199, (1999)
    連結:
  18. U. Landman, W. D. Luedtke, N. A. Burnham, R. J. Colton, “Atomistic mechanisms and dynamics of adhesion, nanoindentation and fracture,” Science, 248, 454-461, (1990)
    連結:
  19. R. Komanduri, N. Chandrasekaran, L. M. Raff, “MD simulation of indentation and scratching of single crystal aluminum,” Wear, 204, 113-121, 2000.
    連結:
  20. A. Gouldstone, H. Koh, K. Zeng, A. E. Giannakopoulos, S. Suresh, “Discrete and continuous deformation during nanoindentation of thin films,” Acta Mater., 48, 2277-2295, (2000)
    連結:
  21. D. Christopher, R. Smith, A. Richer, “Atomistic modeling of nanoindentation in iron and sliver,” Nanotechnology, 12, 372-379, (2001)
    連結:
  22. T. Fu, X. Peng, X. Chen, S. Weng, N. Hu, Q. Li, Z. Wang, “Molecular dynamics simulation of nanoindentation on Cu/Ni nanotwinned multilayer films using a spherical indenter,” Sci. Rep. 6, 35665, (2016)
    連結:
  23. D. Saraev, R. E. Miller, “Atomic-scale simulations of nanoindentation-induced plasticity in copper crystals with nanometer-sized nickel coatings,” Acta Mater., 54, 33-45, (2006)
    連結:
  24. F. Yuan, X. Wu, “Layer thickness dependent tensile deformation mechanisms in sub-10 nm multilayer nanowires,” J. Appl. Phys., 111, 124313, (2012)
    連結:
  25. M. Verdier, H. Huang, F. Spaepen, J. D. Embury, H. Kung, “Microstructure, indentation and work hardening of Cu/Ag multilayers,” Philos. Mag., 86, 5009-5016, (2006)
    連結:
  26. Y. Liu, D. Bufford, H. Wang, C. Sun, X. Zhang, “Mechanical properties of highly textured Cu/Ni multilayers,” Acta Mater., 59, 1924-1933, (2011)
    連結:
  27. X. Zhu, G. P. Zhang, C. Yan, S. J. Zhu, J. Sun, “Scale-dependent fracture mode in Cu/Ni laminate composites,” Philos. Mag. Lett., 90, 413-421, (2010)
    連結:
  28. N. Abdolrahim, H. M. Zbib, D. F. Bahr, “Multiscale modeling and simulation of deformation in nanoscale metallic multilayer systems,” Int. J. Plasticity, 52, 33-50, (2014)
    連結:
  29. N. Abdolrahim, I. N. Mastorakos, S. Shao, D. F. Bahr, H. M. Zbib, “The effect of interfacial imperfections on plastic deformation in nanoscale metallic multilayer composites,” Comput. Mater. Sci., 86, 118-123, (2014)
    連結:
  30. R. F. Zhang, T. C. Germann, J. Wang, X. Y. Liu, I. J. Beyerlein, “Role of interface structure on the plastic response of Cu/Nb nanolaminates under shock compression: non-equilibrium molecular dynamics simulations,” Scripta Mater., 68, 114-117, (2013)
    連結:
  31. J. M. Haile, “Molecular dynamics simulation: elementary methods,” Wiley, New York, (1997)
    連結:
  32. F. Cleri, V. Rosato, “Tight-binding potentials for transition metals and alloys,” Phys. Rev. B: Condens. Matter, 48, 22-33, (1988)
    連結:
  33. R. A. Johnson, “Analytic nearest –neighbor model for FCC metals,” Phys. Rev. B, 37, 3924-3931, (1987)
    連結:
  34. S. Nose ́, “A unified formulation of the constant temperature molecular dynamics methods,” J. Chem. Phys., 81, 511-519, (1984)
    連結:
  35. W. Hoover, “Canonical dynamics: equilibrium phase-space distributions,” Phys. Rev. A, 31, 1695-1697, (1985)
    連結:
  36. 吳政達,多重粒子法與分子動力學應用於奈米轉印製程研究,國立成功大學機械研究所,博士論文,(2008)
    連結:
  37. J. M. Haile, “Molecular dynamics simulation elementary methods,” John Wiely & Sons, Inc., USA, (1992)
    連結:
  38. R. Clausius, “On a mechanical theory applicable to heat,” Philos. Mag. Series, 40, 122-127, (1870)
    連結:
  39. D. Frenkel, B. Smit, “Understanding molecular simulation: From algorithms to applications,” Academic Press, San Diego, (1996)
    連結:
  40. X. W. Zhou, R. A. Johnson, H. N. G. Wadley, “Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers,” Phys. Rev. B, 69, 144113, (2004)
    連結:
  41. S. Plimpton, “Fast parallel algorithms for short-range molecular dynamics,” J. Comput. Phys., 117, 1-19, (1995)
    連結:
  42. J. D. Honeycutt and H. C. Andersen, “Molecular dynamics study of melting and freezing of small Lennard- Jones clusters,” J. Phys. Chem., 91, 4950-4963, (1987)
    連結:
  43. C. L. Kelchner, S. J. Plimpton, J. C. Hamilton, “Dislocation nucleation and defect structure during surface indentation,” Phys. Rev. B, 58, 11085, (1998)
    連結:
  44. M. P. Allen and D. J. Tildesley, “Computer simulation of liquids,” Oxford Univeristy Press, New York, (1987)
  45. Q. Fan, J. G. Xu, H. Y. Song, Y. G. Zhang, “Effects of layer thickness and strain rate on mechanical properties of copper-gold multilayer nanowires,” Acta Phys. Sin., 64, 1, 016201, (2015)
  46. L. Yan, Y. Jia, Z. Bao, Y. Tao, P. Wu, “Nanoindentation test of Cu-Au multilayer film,” Precious Metals., 34, 4, (2013)
  47. R. J. Arsenault, J. R. Beeler, “Computer simulation in material science,” Asm. International, USA, (1988)
  48. R. Smith, M. Jakas, “Atomic and ion collisions in solids and at surfaces. theory, Simulation, and Applications,” Cambridge University Press, USA, (1997)
  49. F. London, “Properties and applications of molecular forces,” Zeitschrift fur Physikalische Chemie, 11, 222-232, (1930)
  50. 小竹進,熱流體之分子動力學,丸善株式會社,日本,1998