透過您的圖書館登入
IP:54.173.43.215
  • 學位論文

高鐵列車引致地盤振動之遠域影響範圍評估

Evaluation of Influence Distance of Ground Vibration by High-Speed Trains

指導教授 : 陳逸駿

摘要


摘要 本研究藉由歷年對台灣高速鐵路之振動量測資料,使用原振動量法、淨振動量法及日本規範修正法,探討高鐵列車行經路堤結構、橋梁結構-淺基礎及橋梁結構-深基礎引致地盤振動之振波衰減係數(α)與振動波傳之影響距離(D)。同時針對各影響因子,包括列車之行車速度、結構體積、土層種類、剪力波速(Vs)、頻率因素等進行探討與比較。最後藉由上述之分析結果,針對其衰減模式與遠域影響距離建立高鐵遠域衰減及影響距離之相關特性。 依據本研究之結果顯示,日本規範修正法在衰減係數及影響距離之分析常顯示離散及不合理的現象,較不適合納入作為評估之依據,故建議以原振動量法及淨振動量法進行分析。 在遠域衰減係數(α)之整體頻率分析,路堤原振動量法及淨振動量法分別為1.2~3.8 (10-3/m)及3.3~7.9 (10-3/m);淺基礎原振動量法及淨振動量法分別為1.8~2.9 (10-3/m)及4.2~8.8 (10-3/m);深基礎之原振動量法及淨振動量法分別為0.9~1.9 (10-3/m)及2.4~6.3 (10-3/m)。結果顯示路堤與淺基礎之衰減趨勢為Vs愈大α愈小,而深基礎之趨勢結果則與淺基礎及路堤相反。 在遠域影響距離評估方面,分析其與車速、剪力波速及頻率之關係。以整體頻率而言,路堤影響距離之原振動量法及淨振動量法之範圍分別為172~306 m及273~811 m;淺基礎影響距離之原振動量法及淨振動量法之範圍分別為151~338 m及306~698 m;深基礎影響距離之原振動量法及淨振動量法之範圍分別為194~475 m及 414~1280 m。在車速部分,路堤與深基礎之趨勢大體上一致,為車速愈快,影響距離愈遠,但淺基礎之趨勢則不同。在剪力波速之評估方面,路堤及淺基礎為剪力波速愈大,影響距離愈大,但深基礎之趨勢則不同。 衰減係數及影響距離以1/3被頻譜之21個頻率進行分析,各結構之最大衰減係數發生之頻率,路堤、淺基礎及深基礎分別為63~100 Hz、25 Hz及63 Hz、40~63 Hz。而高鐵各結構之影響距離隨著1/3倍頻之頻率增加,而影響距離有隨之變小之趨勢。

並列摘要


ABSTRACT This study used the vibration measurement data to evaluate the vibration attenuation coefficient (α) and influence distance (D) for Taiwan high-speed trains on embankments, bridge with shallow foundations, and bridge with deep foundations. All possible influence factors, including train speed, structure volume, soil type, ground shear wave velocity (Vs), and frequency dependence are further explored in the study. To observe the impact of background vibration, analysis methods consist of original vibration data, net vibration data, and the correction vibration data by Japanese specifications. The related vibration characteristics induced by high-speed trains were also discussed. Analysis results show that the method by Japanese specification’s correction data has the larger variation in the attenuation coefficient and influence distance. Therefore, it is not suitable as a basis for ground vibration assessment. On the other hand, the methods of original vibration data and net vibration data present more reliable and reasonable results. For the evaluation of attenuation coefficient (α), the attenuation coefficient of overall vibration for embankments using original vibration data and net vibration data is in the range of 1.2~3.8 (10-3/m) and 3.3~7.9 (10-3/m), respectively. The α value for bridge with shallow foundations using original vibration data and net vibration data is in the range of 1.8~2.9 (10-3/m) and 4.2~8.8 (10-3/m), respectively, and bridge with deep foundations is in the range of 0.9~1.9 (10-3/m) and 2.4~6.3 (10-3/m), respectively. Embankments and shallow foundations present consistent result and the α value decreases with increasing Vs. But, the trend of deep foundations is different with embankments and shallow foundations. For the evaluation of influence distance, the factors of train speed, ground shear wave velocity, and frequency dependence were analyzed. The influence distance of overall vibration for embankments using the original vibration data and net vibration data is in the range of 172~306 m and 273~811 m, respectively. The influence distance for bridge with shallow foundations using original vibration data and net vibration data is in the range of 151~338 m and 306~698 m, respectively, and bridge with deep foundations is in the range of 194~475 m and 414~1280 m, respectively. For the factor of train speed, embankments and deep foundations present consistent result and the influence distance increase with increasing train speed. But the trend of shallow foundations is different. For the factor of ground shear wave velocity, embankments and shallow foundations present consistent result and the influence distance increase with increasing Vs. But, the trend of deep foundations is different. The attenuation coefficient and influence distance were also analyzed using 21 frequencies for the 1/3 octave band. The maximum attenuation coefficient happens at 63~100 Hz, 25 Hz and 63 Hz, and 40~63 Hz for embankments, shallow foundations, and deep foundations, respectively. For all structures of high-speed trains, the influence distance becomes smaller when the frequency of the 1/3 octave band increases.

參考文獻


21. 韓卓高,「高鐵列車於路堤結構引致地盤振動之影響因子評估」,碩士論文,中原大學土木工程研究所,桃園,2009。
20. 邱廷銳,「高鐵列車於橋樑結構引致地盤振動之影響因子評估」,碩士論文,中原大學土木工程研究所,桃園,2009。
19. 張仕銘,「高鐵列車於路堤結構引致地盤振動之評估」,碩士論文,中原大學土木工程研究所,桃園,2008。
18. 陳國彥,「高鐵列車於橋樑結構引致地盤振動之評估」,碩士論文,中原大學土木工程研究所,桃園,2008。
22. 黃宗宸,「台南科學園區地盤振動試驗與其衰減特性之研究」,博士論文,台灣大學土木工程研究所,台北,2010。

被引用紀錄


劉志豪(2017)。高速鐵路引致地盤振動之自動預測模式評估〔碩士論文,中原大學〕。華藝線上圖書館。https://doi.org/10.6840%2fcycu201700041
陳冠全(2014)。台北捷運文湖線於高架橋段之振動特徵評估〔碩士論文,中原大學〕。華藝線上圖書館。https://doi.org/10.6840%2fcycu201400860

延伸閱讀