Title

利用統計製程方法建立半導體微影系統機台風扇過濾裝置的監控系統

Translated Titles

Deploying Fan-filter Unit Monitor-oriented System of Photolithography Process by Using Statistical Process Control

Authors

林郁晟

Key Words

統計製程管制 ; 比流器 ; 風扇過濾裝置 ; 缺陷 ; 品質改善歷程 ; Statistical Process Control ; Current Transformer ; Fan filter Unit ; Defect ; QC Story

PublicationName

中原大學機械工程研究所學位論文

Volume or Term/Year and Month of Publication

2016年

Academic Degree Category

碩士

Advisor

鍾文仁

Content Language

繁體中文

Chinese Abstract

氣流穩定對於半導體製程非常重要,藉由穩定的風壓(Down flow)吹送避免晶圓(Wafer)在製造過程產生微塵汙染。但風壓值並沒有標準值,長期以來均靠製程經驗調整變動,此現象造成製程變異增多情形。另外,提供風壓的裝置,風扇過濾裝置(Fan-filter Unit ,FFU),之前發生過異常壞掉,未察覺的情形下,造成大量產品異常,甚至報廢。本研究以課題達成型品質改善歷程思維程序及使用品質改善七大工具解決問題分析。運用統計製程管理結合自主設計的硬體架構,提出創新管理模式,建立監控系統,對於風壓及做有效的管理及預防監控風扇過濾裝置無預警損壞事件,提升半導體生產過程的穩定性。首先,管理風壓混亂的現象將其統一性,建立風壓標準值,穩定製程範圍,再者,建立監控系統對生產過程風壓及風扇過濾裝置風扇做及時的監控。研究結果顯示,系統目前成功偵測到異常有三次,這三次經驗證明本研究系統發揮其效果。

English Abstract

Airflow stability is very important for the semiconductor manufacturing process, with a stable pressure (Down flow) to avoid blowing the wafer Particle pollution generated in the manufacturing process. But pressure value, and there is no standard value, has long experience in both the process by adjusting for this phenomenon is caused by an increase in the case of process variation. In addition, the devices provide air pressure, fan filter unit broken abnormal happened before, resulting in a large number of products abnormalities unaware of the case, or even scrapped. In this study, statistical process management architectures combine independent design, develop innovative management models, establish monitoring systems for wind pressure and make effective management and monitoring of FFU prevent damage event without warning, enhance the stability of the semiconductor manufacturing process. First, the management chaos phenomenon will pressure its unity, build pressure standard value, stable process range. Furthermore, the establishment of monitoring systems for production processes and FFU fan pressure to make timely monitoring. The results show that the system is currently successfully detect abnormal times, experience has shown that these three systems exert its effect in this study.

Topic Category 工學院 > 機械工程研究所
工程學 > 機械工程
Reference
  1. [6] 林清河,桂楚華(2008). Total Quality Control and Six Sigma,華泰文化, P173-P235
    連結:
  2. [11] Meng-Ju Tsai(2012). Application of QC Story to Improve Particles Defect in Semiconductor Equipment, National Cheng Kung University, P26-P47
    連結:
  3. [12] Huei-Huang Lee (2011). Taguchi Methods: Principles and Practices of Quality Design, National Cheng Kung University, P52-P98
    連結:
  4. 參考文獻
  5. [1] 官生平(2005). 雲端計算統計製程管制,中華民國品質學會,三版, P22-P147
  6. [2] 官生平(2001). SPC統計製程管制,中華民國品質學會,初版, P32-P73
  7. [3] 官生平(2001). SPC統計製程管制-電腦化、自動化、即時化、整合化,中華民國品質學會,二版, P133-P164
  8. [4] 張國棟(2008). Statistical Process Control統計製程管制與軟體應用,中國生產力中心,初版, P1-P264
  9. [5] Wei-Tsang Lee(2008). A Case Study on the Integration of Task Oriented QC Story and the Logic Tree Tools of TOC Thinking Process, National Chiao Tung University,P3-P10
  10. [7] 葉榮鵬(2012). 品質管制與管理(Quality Control &Management),高立圖書, 初版, P1-P264
  11. [8] Hong Xiao(2010). Introduction to Semiconductor Manufacturing Technology, Pearson Education Taiwan Ltd, P29-P220
  12. [9] 吳芳賓(2014). Semiconductor and optoelectronic manufacturing process and equipment. P65-P92
  13. [10] Yu-Chih Wang(2009). Constructing and Application of Running Efficiency Indices
  14. of Processing Tools in an IC Fab, P5-P10
  15. [13] Hsiang-Kai Huang(2013). Study on Reduction of Scribe Line Width in Photolithography Process, National Chiao Tung University, P3-P26
  16. [14] Tokyo electron ltd NDP Maintenance Manual, P13-P42