Title

帶電性磁性奈米粒子應用於精子移動控制

Translated Titles

Sperm Movement Control Utilizing Surface Charged Modified Magnetic Nanoparticles

Authors

王天悅

Key Words

磁控 ; 帶電性磁性奈米粒子 ; 精子 ; surfaced charged magnetic nanoparticles ; magnetic control ; sperm

PublicationName

中原大學機械工程研究所學位論文

Volume or Term/Year and Month of Publication

2016年

Academic Degree Category

碩士

Advisor

章明

Content Language

繁體中文

Chinese Abstract

弱精症或寡精症為導致男性不育的重要因素。為了提高受孕機率,針對治療男性不孕症最有效且直接的方法多採單精子卵漿內注射(ICSI),但此方法經費昂貴、成功率僅約六七成且無法直接於體內執行。2015年由Nasr-Esfahani及Marziyeh提出精子表面整體呈負電性,愈強的負電荷值可能表明精子有更完整的細胞膜,故若能將精子表面與帶電性磁性奈米粒子結合,並通過磁場梯度作用以磁控技術操控精子的移動速度與位置,應可直接提升精子與卵子的接觸機會。 近十幾年來,磁控磁性奈米粒子在生物技術中的應用已經相當廣泛,如傳遞藥物、去除血栓等,由於四氧化三鐵(Fe3O4)磁性奈米粒子具有很高的生物相容性與超順磁特性,因此本研究建構一套磁控精子移動之系統,透過靜電力使帶正電之Fe3O4磁性奈米粒子吸附精子,採用靜態磁場並改變磁場強度及距離,即可誘發磁性材料產生動能,進而帶動精子而達到操控精子移動之目的;若使用帶負電Fe3O4磁性奈米粒子時,透過磁流體之運動亦可間接推動精子移動,但其速度會較慢。 實驗結果顯示透過永久磁鐵產生靜態磁場及磁場梯度後,帶正電Fe3O4磁性奈米粒子與精子細胞膜上負電荷相互吸引而可控制精子移動速度與位置。在磁場強度1.48T時,附著帶正電奈米粒子的精子平移速度約40μm/s,但若使用帶負電之磁性奈米粒子時,因無奈米粒子吸附於精子上,精子不受磁場約束而自由運動;當精子在磁流體溶液中,無論帶正電或帶負電磁性奈米粒子均可藉由磁流體運動帶動精子移動,當磁場強度1.48T時,精子平移速度分別約為100μm/s與80μm/s。而移動速度對磁場強度和磁場梯度呈線性依賴性,與永久磁鐵和精子之間的距離呈二次依賴型。顯示本研究成果已初步驗證精子移動磁控技術是可實現的。

English Abstract

Oligozoospermia or especially asthenospermia is the significant issue related to males for infertility. A popular method to increase the chance of pregnancy is intracytoplasmic sperm injection (ICSI). However, the process is complicated, expensive and can not be implemented in vivo. As shown from previous research, the surface membrane of the sperm is negatively charged. The stronger the negative charge may indicate that the sperm has a more complete cell membrane. (M.H Nasr-Esfahani and T. Marziyeh, 2015). The objective of this research is to establish a system to enhance the movement of sperm by using a combination of oscillating and static magnetic field, thus improving the probability of pregnancy. The goal for this research is to augment the velocity of inactive sperm with magnetically controlled nanoparticles within a variying magnetic field. With very high biocompatibility and super magnetic characteristics, iron oxide(Fe3O4) magnetic nanoparticles(MNPs) are used in this research. Based on Coulomb's law, positively charged MNPs are attracted to the negativly charged cell membrane and attach to help guide it’s movment when placed in a magnetic field. Negatively charged MNPs will repel the sperm cell’s negativly charged surface through the magnetic fluid can therefore be used to direct their movement when introduced to a magnetic field. The permanent magnet in the system is to produce a static magnetic field and gradient and then magnetize the MNPs. Experimental results show that positively charged MNPs were attracted to the negatively charged cell membrane of sperms and the movement speed of the sperms was about 40μm/s at a magnetic field strength of 1.48T. As negatively charged MNPs weren’t attracted to the sperm cell’s negatively charged surface, the sperms would move by themselves without magnetic control. When sperms move in a ferrofluid, no matter the ferrofluid was modified by positively or negatively charged MNPs, sperms would move with the movement of the magnetic fluid, and the maximum moving speed were about 100μm/s and 80μm/s under the magnetic field strength of 1.48T, respectively. The motion velocity of sperms reveals a linear dependence to the magnetic field strength and the field gradient and quadratic dependence with the distance between permanent magnet and the sperm. Our research has verified that the proposed sperm-magnetic controlling technology with MNPs is possible to improve the activity of sperms.

Topic Category 工學院 > 機械工程研究所
工程學 > 機械工程
Reference
  1. 1. K.S. Soppimath, T.M. Aminabhavi, A.R. Kulkarni and W.E. Rudzinski, “Biodegradable polymeric nanoparticles as drug delivery devices(review),” Journal of Controlled Release, vol. 70, 2001, pp. 1-20.
    連結:
  2. 2. S.C. McBain, H.H. Yiu and J. Dobson, “Magnetic nanoparticles for gene and drug delivery-Review,” International Journal of Nanomedicine, vol. 3, no. 2, 2008, pp. 169-180.
    連結:
  3. 3. V.I. Shubayev, T.R. Pisanic, 2nd and S. Jin, “Magnetic nanoparticles for theragnostics,” Adv Drug Deliv Rev, vol. 61, no. 6, 2009, pp. 467-477; DOI 10.1016/j.addr.2009.03.007.
    連結:
  4. 5. T.A. Doll, S. Raman, R. Dey and P. Burkhard, “Nanoscale assemblies and their biomedical applications,” Journal of the Royal Society, Interface / the Royal Society, vol. 10, no. 80, 2013, pp. 20120740; DOI 10.1098/rsif.2012.0740.
    連結:
  5. 6. 吳品潔 and 潘湘如, “男性不孕症,” 家庭醫學與基層醫療, vol. 29, no. 11, 2014, pp. 284-289.
    連結:
  6. 7. Spitz A, Kim ED and L. LI., “Contemporary approach to the male infertility evaluation.,” Obstet Gynecol Clin North Am., 2000.
    連結:
  7. 9. Anamaria Durdureanu-Angheluta, Mariana Pinteala and B.C. Simionescu, “Tailored and Functionalized Magnetite Particles,” Materials Science and Technology, 2012.
    連結:
  8. 11. G. Ricci, S. Perticarari, R. Boscolo, M. Montico, S. Guaschino and G. Presani, “Semen preparation methods and sperm apoptosis: swim-up versus gradient-density centrifugation technique,” Fertil Steril, vol. 91, no. 2, 2009, pp. 632-638; DOI 10.1016/j.fertnstert.2007.11.068.
    連結:
  9. 12. C. F.H., T. F.K., P. J.D., Bouic and R. R.H., “A novel approach for the selection of human sperm using annexin V-binding and flow cytometry. ,” Fertility and Sterility, vol. 91, no. 4, 2009, pp. 1285-1292.
    連結:
  10. 13. T. SL, W. SL, F. P, D. EH, M. MS and O. S, “Somatic cell apoptosis markers and pathways in human ejaculated sperm: potential utility as indicators of sperm quality.,” Mol Hum Reprod, vol. 10, 2004, pp. 825-834.
    連結:
  11. 14. S. T, A. T, G. S, R. M, B. T and Kriegel, “Selection of nonapoptotic spermatozoa as a new tool for enhancing assisted reproduction outcomes: an in vitro model.,” Biol Reprod, vol. 74, 2006, pp. 530-537.
    連結:
  12. 15. C.J. Ainsworth, B. Nixon and R.J. Aitken, “The electrophoretic separation of spermatozoa: an analysis of genotype, surface carbohydrate composition and potential for capacitation,” Int J Androl, vol. 34, no. 5 Pt 2, 2011, pp. e422-434; DOI 10.1111/j.1365-2605.2011.01164.x.
    連結:
  13. 16. M.H. Nasr-Esfahani and T. Marziyeh, “Sperm Selection Based on Surface Electrical Charge,” 2015, pp. 41-50; DOI 10.1007/978-1-4939-1411-1_4.
    連結:
  14. 17. L. Simon, K. Murphy, K.I. Aston, B.R. Emery, J.M. Hotaling and D.T. Carrell, “Optimization of microelectrophoresis to select highly negatively charged sperm,” Journal of assisted reproduction and genetics, 2016, pp. 1-10.
    連結:
  15. 18. R.S. Jeyendran, H.H.V.d. Ven, M. Perez-Pelaez, B.G. Crabo and L.J.D. Zaneveld, “Development of an assay to assess the functional integrity of the human sperm membrane and its relationship to other semen characteristics,” J. Reprod. Fert., no. 70, 1984.
    連結:
  16. 19. P.J. Chan, J.D. Jacobson, J.U. Corselli and W.C. Patton, “A simple zeta method for sperm selection based on membrane charge,” Fertil Steril, vol. 85, no. 2, 2006, pp. 481-486; DOI 10.1016/j.fertnstert.2005.07.1302.
    連結:
  17. 21. R. SK and R. KV, “Sperm membrane protein profiles of fertile and infertile men: identification and characterization of fertility-associated sperm antigen,” Hum Reprod, vol. 19, no. 2, 2004, pp. 234-242.
    連結:
  18. 22. D.J. Smith, E.A. Gaffney, J.R. Blake and J.C. Kirkman-Brown, “Human sperm accumulation near surfaces: a simulation study,” Journal of Fluid Mechanics, vol. 621, 2009, pp. 289; DOI 10.1017/s0022112008004953.
    連結:
  19. 23. R. McGee and J.C. Herr, “Human seminal vesicle-specific antigen is a substrate for prostate-specific antigen (or P-30),” Biology of reproduction, vol. 39, no. 2, 1988, pp. 499-510.
    連結:
  20. 24. R. Yanagimachi, Y. Noda, M. Fujimoto and G. Nicolson, “The distribution of negative surface charges on mammalian spermatozoa,” American Journal of Anatomy, vol. 135, no. 4, 1972, pp. 497-519.
    連結:
  21. 25. S.C. McBain, H.H.P. Yiu, A. El Haj and J. Dobson, “Polyethyleneimine functionalized iron oxide nanoparticles as agents for DNA delivery and transfection,” Journal of Materials Chemistry, vol. 17, no. 24, 2007, pp. 2561; DOI 10.1039/b617402g.
    連結:
  22. 26. H. Cai, X. An, J. Cui, J. Li, S. Wen, K. Li, M. Shen, L. Zheng, G. Zhang and X. Shi, “Facile hydrothermal synthesis and surface functionalization of polyethyleneimine-coated iron oxide nanoparticles for biomedical applications,” ACS Appl Mater Interfaces, vol. 5, no. 5, 2013, pp. 1722-1731; DOI 10.1021/am302883m.
    連結:
  23. 27. R.A. Sperling and W.J. Parak, “Surface modification, functionalization and bioconjugation of colloidal inorganic nanoparticles,” Philos Trans A Math Phys Eng Sci, vol. 368, no. 1915, 2010, pp. 1333-1383; DOI 10.1098/rsta.2009.0273.
    連結:
  24. 28. A. Darszon, A. Guerrero, B.E. Galindo, T. Nishigaki and C.D. Wood, “Sperm-activating peptides in the regulation of ion fluxes, signal transduction and motility,” Int J Dev Biol, vol. 52, no. 5-6, 2008, pp. 595-606; DOI 10.1387/ijdb.072550ad.
    連結:
  25. 29. A.T. Ohta, M. Garcia, J.K. Valley, L. Banie, H.Y. Hsu, A. Jamshidi, S.L. Neale, T. Lue and M.C. Wu, “Motile and non-motile sperm diagnostic manipulation using optoelectronic tweezers,” Lab Chip, vol. 10, no. 23, 2010, pp. 3213-3217; DOI 10.1039/c0lc00072h.
    連結:
  26. 30. S.B. Makhluf, R. Abu-Mukh, S. Rubinstein, H. Breitbart and A. Gedanken, “Modified PVA-Fe3O4 nanoparticles as protein carriers into sperm cells,” Small, vol. 4, no. 9, 2008, pp. 1453-1458; DOI 10.1002/smll.200701308.
    連結:
  27. 31. L. Pascolo, D.E. Bedolla, L. Vaccari, I. Venturin, F. Cammisuli, A. Gianoncelli, E. Mitri, E. Giolo, S. Luppi, M. Martinelli, M. Zweyer and G. Ricci, “Pitfalls and promises in FTIR spectromicroscopy analyses to monitor iron-mediated DNA damage in sperm,” Reprod Toxicol, vol. 61, 2016, pp. 39-46; DOI 10.1016/j.reprotox.2016.02.011.
    連結:
  28. 32. S.B.-D. Makhluf, R. Qasem, S. Rubinstein, A. Gedanken and H. Breitbart, “Loading Magnetic Nanoparticles into Sperm Cells Does Not Affect Their Functionality,” American Chemical Society, vol. 22, 2006, pp. 9480-9482.
    連結:
  29. 33. J.H.E. Promislow, A.P. Gast and M. Fermigier, “Aggregation kinetics of paramagnetic colloidal particles,” The Journal of Chemical Physics, vol. 102, no. 13, 1995, pp. 5492-5498.
    連結:
  30. 34. F. Wang, P. Liu, T. Nie, H. Wei and Z. Cui, “Characterization of a polyamine microsphere and its adsorption for protein,” Int J Mol Sci, vol. 14, no. 1, 2012, pp. 17-29; DOI 10.3390/ijms14010017.
    連結:
  31. 35. W. Lu, M. Ling, M. Jia, P. Huang, C. Li and B. Yan, “Facile synthesis and characterization of polyethylenimine-coated Fe3O4 superparamagnetic nanoparticles for cancer cell separation,” Mol Med Rep, vol. 9, no. 3, 2014, pp. 1080-1084; DOI 10.3892/mmr.2014.1906.
    連結:
  32. 36. K. Oishi, H. Noguchi, H. Saito, H. Yukawa, Y. Miyamoto, K. Ono, K. Murase, M. Sawada and S. Hayashi, “Novel Positive-Charged Nanoparticles for Efficient Magnetic Resonance Imaging of Islet Transplantation,” Cell Medicine, vol. 3, no. 1, 2012, pp. 43-49; DOI 10.3727/215517912x639397.
    連結:
  33. 37. C.C. Berry and A.S.G. Curtis, “TOPICAL REVIEW- Functionalisation of magnetic nanoparticles for pplications in biomedicine,” INSTITUTE OF PHYSICS PUBLISHING, vol. 36, 2003, pp. 198-206.
    連結:
  34. 38. B. CC, W. S, C. S and C. ASG, “THE INFLUENCE OF UNCOATED AND COATED MAGNETIC NANOPARTICLES ON HUMAN FIBROBLASTS IN CULTURE,” European Cells and Materials, vol. 4, 2002, pp. 67-68.
    連結:
  35. 39. J. Kolosnjaj-Tabi, C. Wilhelm, O. Clement and F. Gazeau, “Cell labeling with magnetic nanoparticles: opportunity for magnetic cell imaging and cell manipulation,” J Nanobiotechnology, vol. 11 Suppl 1, 2013, pp. S7; DOI 10.1186/1477-3155-11-S1-S7.
    連結:
  36. 40. I.Y. Wong, S.N. Bhatia and M. Toner, “Nanotechnology: emerging tools for biology and medicine,” Genes & development, vol. 27, no. 22, 2013, pp. 2397-2408; DOI 10.1101/gad.226837.113.
    連結:
  37. 41. S. Laurent, D. Forge, M. Port, A. Roch, C. Robic, L.V. Elst and R.N. Muller, “Magnetic Iron Oxide Nanoparticles Synthesis, Stabilization, Vectorization,” American Chemical Society, vol. 108, no. 6, 2008, pp. 2064-2110.
    連結:
  38. 42. K. Cheng, D. Shen, M.T. Hensley, R. Middleton, B. Sun, W. Liu, G. De Couto and E. Marban, “Magnetic antibody-linked nanomatchmakers for therapeutic cell targeting,” Nat Commun, vol. 5, 2014, pp. 4880; DOI 10.1038/ncomms5880.
    連結:
  39. 45. V. Magdanz and O.G. Schmidt, “Spermbots: potential impact for drug delivery and assisted reproductive technologies,” Expert Opin Drug Deliv, vol. 11, no. 8, 2014, pp. 1125-1129; DOI 10.1517/17425247.2014.924502.
    連結:
  40. 46. Veronika Magdanz, Maria Guix1 and O.G. Schmidt, “Tubular micromotors from microjets to spermbots(Review),” Magdanz et al. Robotics and Biomimetics, 2014.
    連結:
  41. 47. J. Kolosnjaj-Tabi, L. Lartigue, Y. Javed, N. Luciani, T. Pellegrino, C. Wilhelm, D. Alloyeau and F. Gazeau, “Biotransformations of magnetic nanoparticles in the body,” Nano Today, 2016; DOI 10.1016/j.nantod.2015.10.001.
    連結:
  42. 48. A. Bo, K. Forchhammer, J. Heider and C. Baron, “Selenoprotein synthesis: an expansion of the genetic code,” Trends in biochemical sciences, vol. 16, 1991, pp. 463-467.
    連結:
  43. 49. J.S. Basuki, H.T.T. Duong, A. Macmillan, R.B. Erlich, L. Esser, M.C. Akerfeldt, R.M. Whan, M. Kavallaris, C. Boyer and T.P. Davis, “Using Fluorescence lifetime Imaging Microscopy to Monitor Theranostic Nanoparticle Uptake and Intracellular Doxorubicin Release,” ACS NANO, vol. 7, no. 11, 2013, pp. 10175.
    連結:
  44. 4. A. Z.Wilczewska, K. Niemirowicz, K. H.Markiewicz and H. Car, “Nanoparticles as drug delivery systems(Review),” Pharmacological Reports, vol. 64, no. 1734-1140, 2012, pp. 1020-1037.
  45. 8. J. Poongothai, T. Gopenath and S. Manonayaki, “Genetics of human male infertility,” Singapore Med J, vol. 50, no. 4, 2009, pp. 336-347.
  46. 10. T.K. Indira and P.K. Lakshmi, “Magnetic Nanoparticles – A Review,” International Journal of Pharmaceutical Sciences and Nanotechnology, vol. 3, no. 3, 2010.
  47. 20. W. PM, “Profile of a mammalian sperm receptor,” Development, vol. 108, no. 1, 1990, pp. 1-17.
  48. 43. M.G. Campbell, “How do you control a spermbot? Stick its head in a tube.,” New Scientist, vol. 220, no. 2947, 2013, pp. p22-23. 22p.
  49. 44. V. Magdanz, M. Medina‐Sánchez, Y. Chen, M. Guix and O.G. Schmidt, “How to Improve Spermbot Performance,” Advanced Functional Materials, vol. 25, no. 18, 2015, pp. 2763-2770.
  50. 50. 章嘉潔 and 吳昇陽, “豬冷凍精液解凍稀釋液之研究,” 畜產研究, vol. 43, no. 1, 2010, pp. 21~30.