透過您的圖書館登入
IP:3.88.60.5
  • 學位論文

跨年級學生氣體心智模式演變歷程之探究與分析

A Cross-age Investigation of Students’ Conceptions and Mental Models of the Particulate Model of Gas

指導教授 : 邱美虹
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本研究為一跨年齡學生氣體微觀模型相關概念之研究,調查了小學六年級(82人)、國中二年級(90人)、國中三年級(101人)、高中二年級自然組(82人)、高中三年級自然組(85人)、與大學化學系高年級(53人)等共492位學生對於氣體微觀本質以及理想氣體模型的想法,並推測其心智模式。 氣體本質心智模式包括四個組成概念,分別為:氣體組成本質為連續或粒子、氣體成份如何分佈、氣體成分間是否為真空、以及氣體成分運動方式。研究結果發現以小六學生中約有50%持有連續觀,且想法最多樣化;國二學生則約有50%認為氣體運動有特定方向;國三以後仍固著的迷思概念為「粒子間非真空」,約50%學生持有,且此迷思概念持續到化學系高年級仍佔約30%,屬於最難改變之迷思概念。學生們持有的氣體本質心智模式共34種,演變歷程中同樣以小六學生出現之種類最多,隨著年級上升逐漸轉變為完整科學模式以及僅有「粒子間非真空」一迷思概念之「類科學模式」。 理想氣體模型心智模式包括七個組成概念,研究結果顯示,包括「氣體體積改變時,壓力的變化」、「氣體粒子數量改變時,氣體壓力的變化」與「溫度上升時壓力(與體積)會上升,反之則下降」等三項巨觀概念在小學六年級就已有多數學生選擇正確的概念。微觀概念包括:「密閉容器內氣體壓力的成因」、「粒子運動速率與溫度之關係」「粒子本身體積與溫度之關係」、與「同樣數量的不同種類氣體壓力(或體積)的異同之微觀機制」四項。其中第二項在國三之後便有將近60%的學生擁有正確概念,第一項與第四項則到高二之後才有多數學生正確,且迷思概念種類多於其他組成概念,第三項概念於化學系高年級仍僅60%學生這麼認為,換言之「粒子本身體積會熱漲冷縮」是最為固著之迷思概念。理想氣體模型心智模式共52種,演變歷程中小六至高二種類均相當多,且上述四個年齡層的學生心智模式不一致比例均不低。大部分出現模式中均持有正確的巨觀概念,主要差異在於各微觀概念的變異。正確性則至高二後才有明顯進步,完整科學模式亦至高二才出現。至化學系高年級仍有多種「類科學模式」,其迷思概念為「粒子本身體積會熱漲冷縮」以及「同樣數量的不同種類氣體壓力(或體積)的異同之微觀機制」兩項。 以上分析顯示在教學方面,學校課程是從巨觀現象開始逐漸轉換至微觀模型,部分學生能夠有效的進行轉換並習得正確概念,但仍有部分學生無法順利的建立微觀模型。在概念改變理論方面,本研究支持學生的概念系統在遭遇衝突時,少數學生原先的系統是整體完全轉變為新系統;大部分學生的概念系統是在長時間中累積系統成份的小幅變化而逐漸演變為完全正確的概念系統。

並列摘要


This is a cross-age study of students’ conceptions and mental models of the particulate model of gas. This study investigated 492 students at 6th grade, 8th grade, 9th grade, 11th grade (science major), 12th grade (science major), and juniors and seniors of department of Chemistry of a national university. Results show that the four component of the model of the nature of gas, which include “the nature of gas is continuous or particulate,” “the distribution of gas in a container,” “vacuum between gases,” and “the movement of gas,” have shown a progressive revision as the educational age increased. Among these students, about 1/2 of 6th graders still hold the continuous view of the nature of gas; about 1/2 of 8th graders thought that the movement of gas has a specific direction; and the most robust misconception is “there is something else between gas particles (i.e. it is not vacuum),” even 30% of college students still have this misconception. 34 mental models of the nature of gas were found in this study. The varieties of mental models of 6th graders are the highest, then gradually converged with age to the complete science model and the pre-science model, which holds only one misconception: “there is something else between gas particles.” Of the seven component concepts of the mental model of the ideal gas, results show that most 6th graders can choose the right answers on observable concepts such as “how the volume of the gas affect its pressure,” “how the number of particles of the gas affect its pressure,” and “how the temperature of the gas affect its pressure (or volume).” Among the concepts can not be observed, which include “the mechanism of the gas pressure,” “the relation between temperature and the velocity of gas particles,” “the relation between temperature and the size of the gas particles,” and “the pressure (or volume) differences between 2 kinds of gas with same quantity,” most of the students can not choose the right answer until 11th grade, except the second one which most of the 9th graders can choose the right answer. The most robust misconception of this model is: “the size of individual gas particle is affected by the temperature,” even college students have this conception. Researcher found 52 mental models of the ideal gas model in this study, but most of the students did not show a consistency of a single concept among their answers. The varieties of mental models remain the same from 6th grade to 11th grade, but the components concepts of the mental models gradually turn into correct ones. No complete scientific model found until 11th grade, and lots of pre-scientific model have been found in college. The results of this study indicate that official school curriculum do have positive effect on students’ learning, but need to emphasize more on the particulate nature of gas. The results also support the hypothesis of conceptual evolution, which claims when student’s original conceptual system confronts a new system, it might not change the whole system at once, but accumulate small changes for a period of time, and the old conceptual system might gradually evolve to a completely correct new system.

參考文獻


邱美虹. (2000):概念改變的省思與啟示. 科學教育學刊, 8(1), 1-34.
陳盈吉. (2004):探究動態類比對於科學概念學習與概念改變歷程之研究--以國二學生學習氣體粒子概念為例. 國立台灣師範大學, 台北市.
林靜雯. (2006):由概念演化觀點探究不同教科書教--學序列對不同心智模式學生電學學習之影響. 國立台灣師範大學, 台北市.
陳郡鳳. (2005):探討理想氣體動力論之建模教學對高一學生建構微觀氣體粒子運動心智模式的影響. 國立台灣師範大學, 台北市.
Alles, D. L. (2005). The nature of evolution. The American Biology Teacher, 67(1), 7-10.

被引用紀錄


施宗翰(2007)。探究八年級學生對力持有的「意義」、「心智模式」與「內在一致性」〔碩士論文,國立臺灣師範大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0021-2910200810564354
江文瑋(2007)。探討高中生氧化還原心智模式及概念改變之研究〔碩士論文,國立臺灣師範大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0021-2910200810551503
簡于智(2007)。以p-prim探究學生學習『力與運動』的學習路徑〔碩士論文,國立臺灣師範大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0021-2910200810555979
張志康(2009)。從概念改變理論探究建模教學對學生力學心智模式與建模能力之影響〔博士論文,國立臺灣師範大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0021-1610201315162626
陳建良(2009)。探究八年級學生對電化學的概念改變歷程〔碩士論文,國立臺灣師範大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0021-1610201315162632

延伸閱讀