Title

探究七年級在「光學」建模教學的心智模式改變與建模能力表現

Translated Titles

A study on the Seventh-grade student’s Mental-Model Change and their Modeling Ability Performance about “Optics” with Model-Based Teaching.

Authors

楊宜雯

Key Words

概念改變 ; 建模能力 ; 雙層診斷測驗 ; concept change ; modeling ability ; two-tier diagnose test

PublicationName

臺灣師範大學科學教育研究所在職進修碩士班學位論文

Volume or Term/Year and Month of Publication

2009年

Academic Degree Category

碩士

Advisor

邱美虹

Content Language

繁體中文

Chinese Abstract

本研究採用Treagust (1988) 所提出的雙層診斷測驗探究七年級學生有關於「光與視覺」、「光的行進」、「光的反射與平面鏡成像」、「光的折射」四部分在教學前後的概念理解情形以及心智模式類型的演變。本研究對象共分為兩組,分別為建模教學實驗組與一般教學控制組,兩組各為37人。本研究的實驗組教材是針對國中階段的光學概念,以Halloun (1996) 提出的科學建模歷程重新設計適合的建模教學方案,並發展光學建模能力晤談問卷,透過晤談與測驗收集資料,整理比較兩組學生在教學前後對於光學的另有概念分布、學習成效、正確性與一致性、各子概念的心智模式,以及兩組在教學後的建模能力,並藉由情意問卷了解兩組對於不同教學的觀感。研究結果摘述如下: (1)本研究學生在教學前後所具有的光學另有概念,與國內外的相關研究相似。在「光與視覺」與「光的本質」部分教學前就已具有正確的概念;在「光的反射」部分經由學習後仍持有許多錯誤的概念,對於學生是難以學習;在「光的折射」部分經由學習後就能夠從錯誤的概念轉變成科學概念,對於學生是易經由學習而獲得的概念。 (2)從學習成效結果顯示建模教學較有助於學生在「光的反射」與「光的折射」部分的學習,而傳統教學較有助於學生在「光與視覺」部分的學習。 (3)從正確性與一致性的分布圖,發現兩組學生在教學前後,不斷地經由精緻化與修正對光學的概念,學生的心智模式會趨向一致且正確的科學模式發展。 (4)學生在前測、後測以及延宕測驗的主要心智模式結果如下:「光與視覺」為科學模式/科學模式/科學模式;「光的本質」為科學有瑕疵模式/科學有瑕疵模式/科學有瑕疵模式;「光的反射」為混合模式/科學+傳送模式/科學+傳送模式;「光的折射」為科學有瑕疵模式/科學有瑕疵模式/科學有瑕疵模式。 (5)從晤談結果分析,不論在實驗組獲控制組,高學習成就群的建模能力表現>中學習成就群的建模能力表現>低學習成就組的建模能力表現,顯示學習成就與建模能力是有相關的,呼應Grosslight (1991) 提到想要學好科學,必須先提升建模能力。 (6)實驗組學生對於建模教學都保持正向的態度,喜歡教師以多元的方式教學,尤其是實驗的操作最能讓學生印象深刻且幫助理解。 本研究嘗試以科學建模歷程為基礎,再依照每個歷程的目標設計教學活動,並加入許多實驗與體驗活動,建構一個學生主動建構知識的學習環境,以雙層診斷測驗、建模能力晤談問卷以及學習情意問卷了解學生在認知、情意以及技能三方面的表現,整體而言,以建模為基礎的教學有效地幫助學生學習光學概念。

English Abstract

A study on the Seventh-grade students’ Mental-Model Change and their Modeling Ability Performance on learning “Optics” concepts with the use of Model-Based Instruction. Abstract This research adopted Teargust’s (1988) “two-tier diagnose test” design to investigate the seventh grader students’ changes of mental models and their modeling ability of learning the concepts of “light and vision”, “nature of light ”, “reflection”, and “refraction”. The participants were 74 7th grade students who were divided into two groups-“model-based teaching (experimental) group” and “traditional teaching (controlled) group”. The major findings of this research were summarized as follows: (1)The students had similar alternative conceptions about optics as the students in other study (e.g., Fetherstonhaugh & Treagust, 1992; Galili & Hazan, 2000). They held partially correct conceptions of “light and vision” and “nature of light” before instruction. However, they still have some misconceptions of “reflection” even after formal teaching. Compared to other concepts, the concept of “refraction” is easier to acquire after instruction. (2)The research findings revealed that model-based teaching was highly helpful for learning of “reflection” ”(t(72)=1.72, p=.05) and “refraction”(t(72)=1.77, p=.04), while traditional teaching performed well on “light and vision”. (3)Via enrichment and revision processes, the student’s mental model became towards to coherent and correct scientific model. (4)The evolution of mental models in the pretest, posttest, and delayed test were as follows: for “light and vision” concept, scientific model scientific model scientific model; for “nature of light ” concept- scientific flaw model scientific flaw model scientific flaw model; for “reflection” – mixed model scientific transmission model scientific transmission model; and for “refraction”- scientific flaw model scientific flaw model scientific flaw model. (5)Based upon the interview data, the researcher found that the students with higher score in optics test items have high scores in modeling ability items. (6)The students expressed a positive attitude toward modeling instruction. The design of the teaching experiments especially impressed the students and help them understand the optics concepts better. Overall, model-based teaching helps the students learn the Optical concepts more efficiently than the traditional approach.

Topic Category 理學院 > 科學教育研究所在職進修碩士班
社會科學 > 教育學
Reference
  1. 江文雄 (2003):國小高年級學童光迷思概念之研究。臺中師範學院自然
    連結:
  2. 吳政勳 (2003):高中學生光學迷思概念之研究。國立台灣師範大學物理
    連結:
  3. 林靜雯 (2005):由概念演化觀點探究不同教科書教-學序列對不同心智模
    連結:
  4. 邱美虹 ( 2000 )。概念改變研究的省思與啟示。科學教育學刊,第八卷
    連結:
  5. 邱美虹 ( 2008 )。模型與建模能力之理論架構。科學教育月刊,第306
    連結:
  6. 唐明(2002)。國小五年級學童光概念及相關迷思概念之研究。臺北市立
    連結:
  7. 許有亮、陳忠志 (1998):國中學生平面鏡成像的另有架構探討。物理教
    連結:
  8. 概念本體及心智模式之變化。國立台灣師範大學物理研究所碩士論
    連結:
  9. 黃可欣 (2005):科學概念二階段評量診斷工具之發展-以國中光學概念
    連結:
  10. 鍾曉蘭 (2007):以多重表徵的模型教學探究高二學生理想氣體心智模式
    連結:
  11. Andersson, B., & Karrqvist, C. (1983). How Swedish pupils,aged 12-15 years,understand light and its properties. European Journal of SciencE Education, 5(4), 387-402.
    連結:
  12. Buckley, B. C., & Boulter, C. J. (2000). Investigating the role of representations and expressed models in building mental models. In J.K.Gilbert & C.J.Boulter (Eds.), Developing Models in Science Education (pp. 119-135). UK: Kluwer Academic Publishers.
    連結:
  13. Chiu, M. H. & Lin, J. W. (2008). Research on learning and teaching of
    連結:
  14. students’ conceptions in science, in Eriksson, I. V. (Ed.), Science
    連結:
  15. Education in the 21st Century (pp. 291-316). New York: Nova Science
    連結:
  16. Publishers, Inc.
    連結:
  17. Feher, E., & Rice, K. (1988). Shadows and Anti-Images:Children's conceptions of light and vision. Science Education, 72(5), 637-649.
    連結:
  18. Fetherstonhaugh, A., Happs, J., & Treagust, D. (1987). Students misconceptions about light;a comparative study of prevalent view found in western Australia,France New Zealand,Sweden and The United States. Research In Science Education, 17, 156-164.
    連結:
  19. Fetherstonhaugh, T., & Treagust, D. F. (1992). Students' understanding of light and Its properties:Teaching to engender conceptual change. Science Education, 76(6), 653-672.
    連結:
  20. Galili, I., & Hazan, A. (2000). Learners' knowledge in optics:interpretation structure and analysis. International Journal of Science Education, 22(1), 57-88.
    連結:
  21. Gilbert, J. K., Boulter, C. J., & Elmer, R. (2000). Positioning Models in Science Education and in Design and Technology Education. In J. K. Gilbert & C. J. Boulter (Eds.), Developing Models in Science Education. Netherlands: Kluwer Academic Publishers.
    連結:
  22. Goldberg, F. M., & McDermott, L. C. (1986). Student difficulties in understanding image formation by a plane mirror. The Physics Teacher, 24(472-480).
    連結:
  23. Grosslight, L., Unger, C., & Jay, E. (1991). Understanding models and their use in science:Conceptions of middle and high school students and experts Journal of Research in Science Teaching, 28(9), 799-822.
    連結:
  24. Halloun, I. (1996). Schematic modeling for meaningful learning of physics. Journal of Research in Science Teaching, 33(9), 1019-1041.
    連結:
  25. N.F.Selley. (1996). Children's ideas on light and vision. International Journal of Science Education, 18(6), 713-723.
    連結:
  26. Osborne, J. F., & Black, P. (1993). Young children's(7-11)ideas about light and their development. International Journal of Science Education, 15(1), 83-93.
    連結:
  27. Saxena, A. B. (1991). The understanding of the properties of light by students in India. International Journal of Science Education, 13(3), 283-289.
    連結:
  28. Vosniadou, S., & Brewer, W. F. (1992). Mental Models of the Earth:A study of conceptual change in childhood. Cognitive Psychology, 24, 535-585.
    連結:
  29. Vosniadou, S., & Brewer, W. F. (1994). Mental Models of the Day/Night Cycle. Cognitive Psychology, 18, 123-183.
    連結:
  30. 中文部分
  31. 科學教育學系碩士論文,未出版,台中市。
  32. 何嘉峻 (2003):國二、國三不同性別學生光學迷思概念的研究。國立嘉
  33. 義大學科學教育研究所碩士論文,未出版,嘉義市。
  34. 研究所碩士論文,未出版,台北市。
  35. 李采褱(2003):國小中、高年級學童光迷思概念與相關因素探究。屏東
  36. 師院學報,20,315-354。
  37. 林哲正 (2006):以探究教學法改進國中生光學迷思概念與學習成效之研
  38. 究。國立彰化師範大學物理學系碩士論文,未出版,彰化市。
  39. 式學生電學學習之影響。國立台灣師範大學物理研究所博士論文,未
  40. 出版,台北市。
  41. 第一期,1-14。
  42. 期,2-9。
  43. 師範學院數理教育研究所碩士論文,未出版,台北市。
  44. 馬文蔚、唐玄之、周永平 (1995)。物理學發展史上的里程碑。凡異出版
  45. 社:曾蘭英。
  46. 育,2(1),2-14。
  47. 陳婉茹 (2004):探討動態類比對於化學平衡概念學習之研究-八年級學生
  48. 文,未出版,台北市。
  49. 評測為例。慈濟大學教育研究所碩士論文,未出版,花蓮市。
  50. 蕭倍如(2004):台中縣中小學學生對於光學迷思概念之研究。臺中師範
  51. 學院自然科學教育學系碩士論文,未出版,台中市。
  52. 的類型及演變的途徑。國立台灣師範大學物理研究所碩士論文,未出
  53. 版,台北市。
  54. 英文部分
  55. Chi, M. T. H., & Roscoe, R. D. (2002). The processes and challenges of conceptual change. . In M. Limon & L.mason (Eds.), Reconsidering Conceptual Change. (pp. 3-27). Netherlands: Kluwer Academic Publishers.
  56. Chiu, M.-H. (2008). Research And InstructioN-Based/Oriented Work(RAINBOW) for conceptual change in science learing-an example of students' understanding of gas particles. Annual meeting of National Association for Research in Science Teaching,Baltimore.
  57. Eaton, J. F., Andersson, C. W., & Smith, E. L. (1983). When students don't know they don't know. Science and Children, 20(7), 7-9.
  58. Fetherstonhaugh, T., & Happs, J. (1988). Countering fundamental misconceptions about light::An analysis of specific teaching stra strategies with year 8 students. Research In Science Education, 18, 211-219.
  59. Gilbert, J. K. (1993). The role of models and modeling in science education. Presented at the 1993 Annual Conference of the National Association for Research in Science Teaching,Atlanta, GA, USA.
  60. Norman, D. A. (1983). Some observations on mental models. In D. Gentner & A. L. Stevens (Eds.), Mental models. Hillasdale: Erlbaum.
  61. Vosniadou, S. (2001). Part 5: Conceptual Change-Teaching and Learning Processes In H. Behrendt, H. Dahncke, R. Duit, W. Graber, M. Komorek, A. Kross & P. Reiska (Eds.), Research in Science Education - Past,Present,and Future (pp. 177-188). Netherlands: Kluwer Academic Publishers.
Times Cited
  1. 歐建榮(2013)。嵌入數位遊戲於5E學習環教學法對八年級學生學習光學概念之成效評估。臺灣師範大學科學教育研究所在職進修碩士班學位論文。2013。1-121。