Title

探究八年級學生對電化學的概念改變歷程

Translated Titles

An Investigation of 8th Graders' Conceptual Change About Electrochemistry

Authors

陳建良

Key Words

迷思概念 ; 概念改變 ; 動態評量 ; 多重表徵

PublicationName

臺灣師範大學科學教育研究所在職進修碩士班學位論文

Volume or Term/Year and Month of Publication

2009年

Academic Degree Category

碩士

Advisor

邱美虹 教授

Content Language

繁體中文

Chinese Abstract

本研究根據文獻所提及電化學的迷思概類型,設計出一系列有關「離子移動」、「通路概念」、「物質增減」、「粒子行為」及「鹽橋概念」的診斷式紙筆測驗(題型包含二階層測驗試題、單一選擇題、填充及作圖題),預試對象為國三學生,男:87,女:101,共計188人,信度為0.936,診斷式紙筆測驗用來探討學生電化學的迷思概念。   為調查所發展的多重表徵教學可以協助學生電化學概念的學習成效,以宜蘭縣某國中之57名八年級學生為研究樣本,依準實驗研究設計分為實驗組(28人,男:15、女:13)與對照組(29人,男:18、女:11)。學生在「電化學」學習上的教學策略,包括文本教學,動手作實驗,電腦動畫,微型化學及角色扮演。教學活動均是為了使學生發生概念改變,並比較該教學對學生之影響,並對實驗組學生施以問卷調查,瞭解學生對此種教學的看法。再者,本研究亦想探討老師的教學策略對學生的學習成效。   經過共計九堂課的教學後,分析兩組學生教學前、後的總分、電化學分項概念、概念的屬性及層次,以及三次動態評量的答題情形,在量化上,以spss分析概念的表現,研究結果分述如下: (1)在教學成效方面:實驗組與控制組兩組學生在教學前並未達顯著差異(t=0.26,p=0.793),教學後則達到顯著差異(ANCOVA,後測:F=8.29, p=0.006;延宕後測:F=6.18,p=.016)。 (2)在分項概念的組間比較(ANCOVA)中,實驗組與控制組兩組學生在分項概念未達顯著差異,後測在「通路概念」、「鹽橋概念」的概念上達顯著差異。延宕後測於「離子移動」、「通路概念」、「物質增減」及「鹽橋概念」均達顯著差異。 (3)在教學過程的動態評量中,實驗組的得分皆顯著優於控制組,兩組學生除了第一次評量(電離說: t=-1.79,p=0.080)未達顯著差異,在其他的動態評量上均達顯著差異(鋅銅電池: t=-3.79,p=0.000,電解水: t=-2.27,p=0.030)。   由結果發現,實驗組的學生的學習成就顯著高於對照組,顯示本研究所開發之多重表徵教學法能有效地促進學生概念的學習與學習興趣。另外,問卷結果顯示,學生對本教學模型於學習的幫助給予正面的肯定,也喜歡此種的上課方式。 而在教學策略方面,學生對於研究教師給予正面的評價,因此在學校的教學中,實施多重表徵的策略,將更有意義地促進學生的學習。

English Abstract

To find out students’ difficulties in learning concepts of electrochemistry, the researcher designs a series of diagnostic paper-and-pencil tests(including two-tier test 、multiple choice questions and blank-filling and making graphs) about the movement of ions , the concept of a circuit, gain or loss of the substance, the behavior of the particles, and salt bridge. There are 188 ninth grade students(87 boys and 101 girls.)in junior high school participate pre-test. The reliability of the instrument is 0.936. The purpose of this research attempts to explore students’ misconceptions about electrochemistry. In order to investigate the impact of multiple representations teaching of students’ learning in study. This research took quasi-experimental design, and the samples consisted of 57 eight grade students in I-Lan county, who divided into two classes. One class was experimental group(28 in total, 15 males and 13females) and the other was control group(29 in total, 18 males and 11 females). The strategies of teaching electrochemistry in this research included text-teaching, experiment, computer-aided animation media, microscale chemical experiment and role-playing. All kinds of instructional methods were given respectively in order to make conceptual change happen. Comparison among both groups has been made to determine the effect of the teaching methods, and a questionnaire has been conducted along with the students from the experimental group to understand their opinions on this multiple representation approach. Furthermore, this experiment also wishes to investigate the effects on students’ achievement in learning due to instructors’ teaching strategies. After nine-class-period teaching, the researcher analyzes the total score of students conceptions, the subconceptions on electrochemical concepts between the two groups, and their responses in the three units of dynamic assessments.About quantitative analysis,the analysis on conception performance is operated with SPSS software. The outcome of the research can be summarized as follows: (1)The effectiveness of teaching: There is no significant difference between the control group and the experimental group before teaching (t=0.26,p=0.793). However, it shows significant difference between two groups after teaching (ANCOVA, posttest: F=8.29, p=0.006; delayed test: F=6.18, p=0.016). (2)In the subconceptions of electrochemistry There is no significant difference of subconceptions of electrochemistry between the control group and the experimental group before teaching. However, it shows significant difference between two groups after teaching in posttest(the concept of a circuit and salt bridge」)and in delayed test(the movement of ions, the concept of a circuit, gain or loss of the substance and salt bridge). (3)Dynamic assessments: In the process of dynamic assessments, the scores in the three assessments of the experimental group are far better than those of the control group.It shows significant difference between two groups after teaching(electrochemical cell: t=-3.79,p=0.000,the electrolysis of water: t=-2.27,p=0.030) except in the first assessment(the theory of electrolytic dissociation: t=-1.79,p=0.080). The key finding from this study, the experimental group achieved a higher score compared to the control group. It revealed that the multiple representations teaching developed by this research can promote a better concept developing and a greater learning desire more efficiently. Furthermore, as for the result of the questionnaire, the students gave positive feedbacks towards the teaching models for its contribution in learning. From the aspect of teaching strategy, the students had positive comments toward this research; therefore, it is possible to implement multiple representation approach in school teaching to promote students' learing meaningfully.

Topic Category 理學院 > 科學教育研究所在職進修碩士班
社會科學 > 教育學
Reference
  1. 丁鋐鎰(2001) ﹕國中氧化還原概念之精熟學習研究。國立台灣師範大學化學研究所碩士論文。
    連結:
  2. 方金祥(1998)。微型化學實驗之設計與製作。高雄:復文圖書出版社。
    連結:
  3. 李琼慧 (2001):以凱利方格法探究國三學生電化學迷思概念。國立台灣師範大學碩士論文,民國90年6月。
    連結:
  4. 林香岑(2001):高中「電化學」概念媒體教學與教師教學策略之研究。國立台灣師範大學碩士論文,民國90年6月。
    連結:
  5. 陳盈吉 (2004)。 探究動態類比對於科學概念學習與概念改變歷程之研究-以國二學生學習氣體粒子為例。國立台灣師範大學科學教育研究所碩士論文(未出版)。
    連結:
  6. 邱美虹. (2000):概念改變的省思與啟示. 科學教育學刊, 8(1), 1-34.
    連結:
  7. 邱顯博(2002)。國二、國三學生的擴散作用概念與概念改變之研究。國立台灣師範大學科學教育研究所碩士論文(未出版)。
    連結:
  8. 吳明珠(2004)。從科學史中理論模型的發展暨認知學心智模式探討化學概念的理解-層析理論的模型化案例。國立台灣師範大學科學教育研究所博士論文(未出版)。
    連結:
  9. 邱美子(2002):國中電化學電腦動畫輔助教學之學習成效研究。國立台灣師範大學碩士論文,民國91年6月(未出版)。
    連結:
  10. 吳怡嫻 (2006)。 跨年級學生氣體心智模式演變歷程之探究與分析。國立台灣師範大學科學教育研究所碩士論文(未出版)。
    連結:
  11. 鍾曉蘭 (2006)。 以多重表徵的模型教學探究高二學生理想氣體心智模式的類型及演變的途徑。國立台灣師範大學科學教育研究所碩士論文(未出版)。
    連結:
  12. Anisworth, S.(1999). The functions of multiple representations. Computer and Education, 33, 131-152
    連結:
  13. Buckley, B. C. (2000). Interactive multimedia and model-based learning in biology. International Journal of Science Education, 22(9), 895-935.
    連結:
  14. Buckley, B. C. & Boulter, C. J. (2000). Investigating the Role of Representations and Expressed Models in Building Mental Models. In J. K. Gilbert and C.J. Boulter(eds.), Developing Models in Science Education (pp.119-135.) Netherlands: Kluwer Academic Publishers.
    連結:
  15. Bruner, J. (1973). Going Beyond the Information Given. New York: Norton.
    連結:
  16. Chinn, C. A., & Brewer, W. F. (1993). The role of anomalous data in knowledge acquisition: A theoretical framework and implications for science instruction. Review of Educational Research, 63(1), 1-49.
    連結:
  17. Gamett,P.J.;Treagust,D.F.(1992a).Conceptual difficulties experience by high school students of electrochemistry :electriccircuits and oxidation-reduction equations.Journal of Research in science Teaching,29(2),121-142.
    連結:
  18. Gamett,P.J.;Treagust,D.F.(1992a).Conceptual difficulties experience by high school students of electrochemistry :electrochemical (galvanic) and rlectrolytic cells. Journal of Research in science Teaching,29(2),1079-1099.
    連結:
  19. Greenbowe,T.J.(1994).An interactive multimedia software program for exploring electrochemical cells.Journal of Research in Science Teaching,29(2),1079-1099.
    連結:
  20. K.A.Burke, Thomas J. Greenbowe,and Mark A.,Windschitl.( 1998 ).Developing and Using Conceptual Computer Animations Chemistry Instruction, Journal of Chemical Education.Vol.75 No.12 December 1998,1658-1661
    連結:
  21. Kuhn,T.S.(1970)The structure of scientific revolutions.(2nded)Chicago:University of Chicago Press
    連結:
  22. Michael J.Sanger and Thomas J. Greenbowe(1997) Students,Misconceptions in Electrochemistry:Current Flow in Electrolyte Solutions and the Solt Bridge Journal of Chemical Education.Vol.74 No.7 July 1997,819-823
    連結:
  23. Michael J.Sanger and Thomas J. Greenbowe(1999),An Analysis of college chemistry Texbooks As Sources of Misconceptions and Errors in ElectrochemistryJournal of Chemical Education.Vol.76 No.6 June 1999,853-860
    連結:
  24. Michael J.Sanger and Thomas J. Greenbowe(2000) Addressing Student Misconceptions concerning electron flow in aqueous solutions with instruction including computer animations and conceptual change strategies International urnal Fournal of Sciene Education ,2000,Vol.22,Vol.22,No.5,521-537
    連結:
  25. Ogude,A.N.& Bradley,J.D(1994).Ionic conducation and electrical neutrality in Operating electrochemical cells.Journal of .Chemical.Education,71(1),29-34.
    連結:
  26. Ogude,A.N.& Bradley,J.D(1996). Electode processes and aspect relating to cell e.m.f., current, and cell component in operating electrochemical cells .Journal of .Chemical.Education,73(12),1145-1149.
    連結:
  27. Piaget, J. (1964, 2003). Cognitive Development in Children: Development and Learning, Journal of Research in Science Teaching, 40(supplement), S8-S18
    連結:
  28. Posner, G. J., Strike, K. A., Hewson, P. W., & Gertzog, W. A. (1982). Accommodation of a scientific conception: Toward a theory of conceptual change. Science Education, 66(2), 211-227.
    連結:
  29. Thagard, P. (1992). Conceptual revolutions. Prince, NJ: Princeton University Press.
    連結:
  30. von Glasersfeld,E.(1991) Constructivism in Education,The International Encyclopedia of Curriculum,pp32~33 Pergamon Press.
    連結:
  31. Vosniadou, S., & Brewer, W. F. (1992). Mental models of the earth: A study of conceptual change in childhood. Cognitive Psychology, 24, 535-585.
    連結:
  32. 一、 中文部分
  33. 天下文化(2004):3D理化遊樂場,民國93年3月。
  34. 余民寧(1997)。有意義的學習-概念構圖之研究。商鼎文化出版社。
  35. 陳婉茹 (2004)。 探討動態類別對於化學平衡概念學習之研究-八年級學生概念本體及心智模式之變化。國立台灣師範大學科學教育研究所碩士論文(未出版)。
  36. 郭順利(1998):高中學生在電化學的錯誤概念。臺北:國立台灣師範大學碩士論文。
  37. 熊召弟、王美芬(1995)。國民小學自然科教材教法。臺北:心理出版社。
  38. 張馨文 (2000)﹕師院學生電化學心智模式之研究。台中師範學院國民教育研究所碩士論文。
  39. 康軒出版社(2007):國民中學自然與生活科技教科書第六冊。台北市:康軒。
  40. 二、英文部分
  41. Allsop,R.T.;George,N.H.(1982).Redox in Nuffield advanced chemisstry.Education in chemistry,19, 57-59.
  42. Dagher,Z.R.(1994).Sci.Educ.78,601-614.
  43. De Jong,O.(1995).Characteristics of Chemistry Education in Research in Europe:A Three-Context View;Paper presented at theThird Conference on Research in Chemical Education,Lublin-Kazimierz,Poland,September 1995.
  44. Hewson, P. W., & Hewson, M. G. A. (1992). The status of students' conceptions. In R. Duit, F. Goldberg & H. Niedderer (Eds.), Research in physics learning: Theoretical issues and empirical studies (pp. 59-73). Kiel, Germany: Leibniz Institute for Science Education.
  45. Lakatos, I. (1970). Falsification and the methodology of scientific research programmers. In I. Lakatos and A. Musgrave, Eds., Criticism and the growth and the knowledge, 91-195. Cambridge: Cambridge University press.
  46. Novak,J.D.Studies Sci.Educ.1988,15,77-101.
  47. Osborne,R.J.;Bell,B.F.( 1983).Eur.J.Sci.Educ.,5,1-14.
  48. Paivio, A. (1971). Imagery and Verbal Processes. New York: Holt, Rinehart, & Winston.
  49. Paivio, A. (1986). Mental Representations: A dual Coding Approach .(Oxford Psychology Series No.9) New York: Oxford University. Paivio, A. (1990). Mental Representation: A Dual Coding Approach. New York: Oxford University Press.
  50. Piaget ,J.(1970). Piaget′s theory.Carmichael′s of Child Psychology.Wiley,New York.
  51. Wong,E.D.(1993).J.Res.Sci.Teach.30,1259-1272.
Times Cited
  1. 謝志庚(2011)。新型多媒體學習平台之初探-以認識電解質與電池為例。臺灣師範大學化學系學位論文。2011。1-161。
  2. 呂昕潔(2016)。多重表徵教學之行動研究-以國中九年級自然與生活科技領域為例。中原大學教育研究所學位論文。2016。1-113。