Title

探討建模教學對於八年級學生學習物質粒子概念之學習成效與建模能力之影響

Authors

賴俊文

Key Words

物質粒子概念 ; 建模能力 ; 建模教學 ; Concept of material particles ; modeling ability ; modeling teaching

PublicationName

臺灣師範大學科學教育研究所在職進修碩士班學位論文

Volume or Term/Year and Month of Publication

2010年

Academic Degree Category

碩士

Advisor

邱美虹

Content Language

繁體中文

Chinese Abstract

本研究旨在探討建模教學對八年級學生學習物質粒子概念之影響,希望藉由建模教學提升學生物質粒子概念學習成效與建模能力。研究對象為92位台北市某國中八年級學生,研究對象依據教學方式共分為三組,其分別為「靜態模型講述組」、「動態模型講述組」與「動態模型建模組」,利用研究者自行發展測驗工具分析學生學習成效,並利用建模能力評估指標(MAAI)分析晤談學生之建模能力表現。研究結果顯示: 1.三組學生於物質粒子概念後測成績比較(F=15.49,p=.000<0.001)或總結性評量比較(F=4.663,p=.012<.05)均達顯著差異,再經由Scheffe’s事後多重比較分析,顯示建模教學有助於學生物質粒子概念建立。 2.三組學生於動態評量部分,除動態評量(Ⅱ)未達顯著差異外(F=0.965,p=.385>.05),其餘三次動態評量比較結果均達顯著差異(F=4.270,p=.017<.05; F=4.101,p=.020<.05; F=4.577,p=.013<.05),再經由Scheffe’s事後多重比較分析,顯示建模教學有助於學生在學習過程中,對物質粒子概念的建立。 3.研究結果亦顯示,不同的教學策略對於學生建立原子結構心智模式演變途徑並不相同。靜態模型講述教學主要途徑為:實心球原子模型→拉塞福原子模型→拉塞福原子模型;動態模型講述教學與動態模型建模教學主要途徑則為:實心球原子模型→波耳原子模型→波耳原子模型,顯示動態模型較能建立學生波耳原子結構模型,而學生所建立的原子結構心智模型愈接近科學模型,學習成效愈好。 4.三組學生於物質粒子建模能力之表現,研究結果顯示,三組學生於模型效化、模型重建與整體建模能力等三個方面均有顯著差異(p=.033<.05),顯示建模教學有助於提升學生整體之建模能力,特別是在模型效化與模型重建。

English Abstract

This study investigated that the effectiveness of modeling teaching on 8th graders’ learning of particles in these states. This study intended to improve students’learning of material particles and their modeling ability via modeling teaching. The subjects in this study were 92 8th grade students in the junior high school in Taipei. They were divided into three groups in terms of the teaching strategies. The groups were static Model, dynamic Model, and model-based teaching. The assessment was developed by the researcher of their performance. The Modeling Ability Analytic Index (Chang & Chiu, 2009) were used to analyze the modeling ability of the students. The results showed that: 1. The posttest’s score (F=15.49,p<.001) and summative assessment (F=4.663,p=.012) in the concept of material particles showed that there were significant differences among the three groups . Analyses of Sheffe's method for post hoc multiple comparison showed that the modeling teaching was useful to help student to construct the conception of material particles. 2. All parts of the dynamic assessments except part Ⅱ (F= .965 , p = .385>.05)showed that there were significant differences among the three groups (F=4.270,p=.017<.05; F=4.101,p=.020<.05; F=4.577,p=.013<.05). Again,the results showed that the modeling teaching was useful to help student to construct the conception of material particles in the learning process via the Scheffe’s post-history testing 3. The results suggested that different teaching strategies for helping students’construction mental models about atomic structure by lead to different pathway.The main process of construction static model was thus spheroid Atom Model Rutherford's Atomic Model → Rutherford's Atomic Model. The main process of develops’ the dynamic model exposition-teaching and model-based teaching were spheroid Atom Model → Bohr's Atomic Model →Bohr's Atomic Model. The results showed that the dynamic model exposition-teaching was more helpful to establish the structure of Bohr's Atomic Model than the other two. 4. The performance of the establishment ability of the material particle for the three groups showed that significant difference was between the model validation, model restructuring, and modeling ability as a whole(p=.033). The results showed that it was useful to improve the modeling ability for the students via the modeling teaching, especially in the model validation and model restructuring.

Topic Category 理學院 > 科學教育研究所在職進修碩士班
社會科學 > 教育學
Reference
  1. 吳明珠(2004)。從科學史中理論模型的發展暨認知學心智模式探討化學概念的理解-層析理論的模型化案例。國立台灣師範大學科學教育研究所博士論文
    連結:
  2. 周金城(2007)。探究中學生對科學模型的分類與組成本質的理解。第23屆中華民國科學教育學術研討會,高雄市:高雄師範大學。
    連結:
  3. 邱美虹和高淑芬(1999)。類比對應對學生建構「原子結構」心智表徵之影響。師大學報,44(1&2),31-59 。
    連結:
  4. 邱美虹(2000)。概念改變研究的省思與啟示。科學教育學刊,8(1),1-34。
    連結:
  5. 邱美虹和林靜雯(2002)。以多重類比探究兒童電流心智模式之改變。科學教育學刊,10(2),109-134。
    連結:
  6. 邱美虹(2007)。模型與建模能力之理論架構。第23屆中華民國科學教育學術研討會,高雄市:高雄師範大學。
    連結:
  7. 邱美虹和劉俊庚(2008)。從科學學習的觀點探討模型與建模能力。科學教育月刊,314,2-20。
    連結:
  8. 施怡君(2000)。「原子結構與週期表」超文系統之開發與學習成效研究。國立台灣師範大學化學研究所碩士論文。
    連結:
  9. 郭生玉(1996)。心理與教育測驗。精華書局。
    連結:
  10. 張志康和邱美虹(2009)。建模能力分析指標的發展與應用-以電化學為例。科學教育學刊,17(4),319-342。
    連結:
  11. 張靜儀(2002)。以類比進行自然科統整教學-「氣團與天氣」臨床教學經驗談。科學教育月刊,255,47-50。
    連結:
  12. 陳盈吉(2004)。探究動態類比對於科學概念學習與概念改變歷程之研究-以國二學生學習氣體粒子為例。國立台灣師範大學科學教育研究所碩士論文。
    連結:
  13. Andersson, B. (1990). Pupils' conceptions of matter and its transformations (age 12-16). Studies in Science Education, 18, 53-85.
    連結:
  14. Boo, H. K. & Watson, J. R. (2001). Progression in high school student’s (aged 16-18) conceptualizations about chemical reactions in solution. Science Education, 85(5), 568-585.
    連結:
  15. Cherif, A. A., Adams, G. E., & Cannon, C. E.(1997). Nonconventional methods in teaching matter, atoms & periodic table for nonmajor students. The American Biology Teacher, 59, 428-438.
    連結:
  16. Chiu, M. H. (2007). A national survey of students’ conceptions of chemistry in Taiwan. International Journal of Science Education, 29(4), 421-452.
    連結:
  17. Clough, E. E., & Driver, R. (1986). A study of consistency in the use of students’ conceptual frameworks across different task contexts. Science Education, 70(4), 473-496.
    連結:
  18. Crawford, B. A., & Cullin, M. F. (2004). Supporting prospective teachers’ conception of modeling in science. International Journal of Science Education, 26(11), 1379-1401.
    連結:
  19. Driver, R., Oldham (1986). A constructivist approach to curriculum development in science, Studies in Science education, 13, 105-122.
    連結:
  20. Ebenezer, J. V., & Gaskell, P. G. (1995). Relational conceptual change in solution chemistry. Science Education, 79(1), 1-17.
    連結:
  21. Gabel, D. L., Samuel, K. V., & Hunn, D. (1987). Understanding the particulate nature of matter. Journal of Chemical Education, 64(8), 695- 697.
    連結:
  22. Garnett, P. J., & Hackling, M. W. (1995). Students’ alternative conceptions in chemistry: A review of research and implications for teaching and learning. Studies in Science Education, 25, 69-95.
    連結:
  23. Georgios, T. (1997). Atomic and molecular structure in chemical education : A critical analysis from various perspectives of science education. Journal of Chemical Education. 74(8), P922-925.
    連結:
  24. Gilbert, S. W. (1991). Model building and a definition of science. Journal of Research in Science Teaching, 28(1), 3- 9.
    連結:
  25. Griffiths, A, K. & Preston, K R. (1989). An investigation of Grade 12 students’ misconception in relation to fundamental characteristics of molecule and atoms. 62nd, San Francisco, CA, March 30 –April 1,1989.
    連結:
  26. Halloun, I. (1996 ). Schematic modeling for meaningful learning of physics. Journal of Research in Science Teaching, 33(9), 1019-101.
    連結:
  27. Halloun, I. A. (2006 ). Modeling Theory in Science Education. Netherlands: Springer.
    連結:
  28. Harrison, A. G, (2001). How do teachers and textbook writers model scientific ideas for students? Research in Science Education, 31, 401-435.
    連結:
  29. Harrison, A. G,. Treagust, D. F. (1996). Secondary students’ mental models of atoms and molecules implications for teaching chemistry. Science Education, 80(5), 509-534.
    連結:
  30. Harrison A. G., & De Jong. O. (2005). Exploring the use of multiple analogical models when teaching and learning chemical equilibrium. Journal of Research in Science Teaching, 42(10), 1135–1159.
    連結:
  31. Lee, K. W. L. (1999). Particulate representation of a chemical reaction mechanism. Journal of Research in Science Education, 29(3), 401-415.
    連結:
  32. Mèheut, M. (2004). Designing and validating two teaching- learning sequence about particle model. International Journal of Science Education, 26, 605-618.
    連結:
  33. Novick, S. & Nussbaum, J. (1978). Junior high school pupils’ understanding of the particulate nature of matter: An interview study. Science Education, 62(3), 273-281.
    連結:
  34. Novick, S., & Nussbaum, J. (1981). Pupils’ understanding of the particulate nature of matter : A cross-age study. Science Education, 65(2), 187-196.
    連結:
  35. Pringle, R. M. (2004). Making it visual: Creating a model of the atom. Science Activities, 40(4), 30-33.
    連結:
  36. Renner, J.W., & Marek, E.A. (1990). An educational theory base for science teaching. Journal of Research in Science Teaching, 27(3), 241-246.
    連結:
  37. Siegel, S., & Castellan, N. J. Jr. (1989). Nonparametric statistic for the behavioral sciences(Vol 2.). New York: McGraw-Hill.
    連結:
  38. Sins, P. H. M., Savelsbergh, E. R., & van Joolingen, W. R. (2005). The difficult process of scientific modeling: an analysis of novices’ reasoning during computer-based modeling. International Journal of Science Education, 14(18), 1695-1721.
    連結:
  39. Solomon, J. (1983). Learning about energy: How pupils think in two domains. European Journal of Science Education, 5(1), 49-59.
    連結:
  40. Treagust, D. F., Chittleborough, G., & Mamiala, T. L. (2002). Students’ understanding of the role of scientific models in learning science. International Journal of Science Education, 24(4), 357-368.
    連結:
  41. Van Driel, J. H. & Verloop, N. (1999).Teachers’ knowledge of models and modeling in science. International Journal of Science Education, 21, 1141-1153.
    連結:
  42. Van Driel, J. H. & Verloop, N. (2002). Experienced teachers’ knowledge of teaching and learning of models and modeling in science education. International Journal of Science Education, 24(12), 1255-1272.
    連結:
  43. Westfall, R. S. (1980). Never at Rest. A Biography of Isaac Newton. Cambridge: Cambridge University Press.
    連結:
  44. Yarroch, W. L. (1985). Student understanding of chemical equation balancing. Journal of Research in Science Teaching, 22, 258-275.
    連結:
  45. 中文部分
  46. 李文德(2002)。國小學童「物質細微顆粒概念」學習之研究。屏師科學教育,15,41-53。
  47. 余民寧(1999)。有意義的學習—概念構圖之研究。台北市:商鼎文化出版社
  48. 邱美虹和翁雪琴(1995)。國三學生四季成因之心智模式與推論歷程之探討。科學教育學刊,3(1),23-68。
  49. 邱美虹(2003)。台灣地區中學生「粒子、化學平衡、酸檢鹽」概念之心智模式與成因之探討(Ⅳ)。國科會專題研究報告,NSC91-2522-S-003-020。
  50. 邱美虹(2007)。建模能力分析指標的應用-以電化學為例,行政院國家科學委員會專題研究計畫成果報告。NSC95-2511-S-003-024-MY2。
  51. 邱美虹、劉俊庚和賴俊文(投稿中)。以模型為基礎的建模教學-原子結構概念為例。
  52. 邱照麟(2000)。國小學童「空氣」概念之研究。國立屏東師範學院碩士論文。
  53. 盛承堯(1992)。國小自然科學溶液概念及迷思概念之探討。國科會專題研究報告,NSC81-0111-S-026-002-NN。
  54. 陳婉茹(2004)。探討動態類別對於化學平衡概念學習之研究-八年級學生概念本體及心智模式之變化。國立台灣師範大學科學教育研究所碩士論文。
  55. 黃寶鈿(1989)。溶液相關概念之認知發展層次的研究。國科會專題研究報告,NSC78-0111-S003-018-D。
  56. 熊召弟、王美芬、段曉琳和熊同鑫(1996)。科學學習心理學。臺北:心理出版社。
  57. 鄭志鵬(1998)。探討高中學生之氣體概念及相關粒子概念。臺北市:國立台灣師範大學碩士論文。
  58. 蔡明儒(2004)。國小學童光學概念改變之研究。國立嘉義大學碩士論文。
  59. 盧文顥(1992)。從粒子模型概念探討學生對於溶液概念之思考模式。國立台
  60. 灣師範大學化學研究所碩士論文。
  61. 鍾曉蘭和邱美虹(2007,12月)。探究高二學生理想氣體本質的心智模式演變過程。第23屆中華民國科學教育學術研討會,高雄市:高雄師範大學。
  62. 英文部分
  63. Ainsworth, S., Bibby, P., & Wood, D. J. (1998). Costs and benefits of multi-representational learning environments. In M. W. van Someren, P. Reimann, H. P. A. Boshuizen and T. de Jong (Eds.), Learning with Multiple Representations. (pp. 120-134). New York: Pergamon.
  64. Ben-Zvi, R., Eylon, B., & Silberstein, S. (1986). Is an atom of copper malleable? Journal of Chemical Education, 63, 64-66.
  65. Bucat, R. (2005). An Analysis of Dimensions of Learning Chemistry- A non-linear Process: Knowledge of Chemistry content is different from knowledge about teaching that content- Pedagogical content knowledge, Speech at Graduate institute of Science Education, National Taiwan Normal University, Taipei, June 2005.
  66. Buckley, B. C. & Boulter, C. J. (2000). Investigating the Role of Representations and Expressed Models in Building Mental Models. In J. K. Gilbert & C.J. Boulter (Eds.), Developing Models in Science Education (pp.119-135.). Dordrecht, The Netherlands: Kluwer Academic Publishers.
  67. Haidar, A. H., & Abraham. M. R. (1991). A comparison of applied and knowledge of concepts based on the articulate nature of matter. Journal of Research in Science Teaching, 28(10), 919-938.
  68. Harrison, A. G. & Treagust, D. F. (2002). The particulate nature of matter: Challenges in understanding the submicroscopic world. In J. K. Gilbert, O. de Jong, R. Justi, D. F. Treagust, J. H. Van Driel (Eds.), Chemical Education: Towards research-based practice. (Kluwer Academic Publishers), 189-212.
  69. Hestenes, D. (1995). Modeling software for learning and doing physics. In C. Bernardini, C. Tarsitani, & M. Vincentini (eds.), Thinking physics for teaching.(pp. 25-66). New York: Plenum.
  70. Justi, R. S., & Gilbert, J. K. (2003). Teachers’ view on the nature of models. International Journal of Science Education, 25(11), 1369-1386.
  71. Keiffer, B. (1995). Atom illumination: A bright idea for modeling atomic structure. The Science Teacher. 62, 29-31.
  72. Krajcik, J. S. (1989). Students’ interactions with science software containing dynamic visuals. In M. Eisenhart & J. G. Goetz (Chairs), Meanings of science and technology in schools and communities. Symposium conducted at the 88th annual meeting of the American Anthropological Association, Washington, D.C.
  73. Leisten, J. (1995). Teaching atoms earlier! School Science Review, 77(279), 23-27.
  74. Moyer, W. A., & Mayer, W. V. (1985). A Consumer’s guide to biology textbooks 1985. Washington, DC: People for The American Way.
  75. Nussbaum, J. (1985) .The particulate nature of matter in the gaseous phrase. In Driver, R., Guesne, E. & Tiberghien, A. (Eds.), Children’s Ideas in Science (pp.124-144). Milton Keynes, UK: Open University Press.
  76. Piaget, J. (1970), Piaget’s theory, In P. Mussen (eds.), Carmichael’s Manval of child Psychology (3rd eds.) Vol.1. New York: Wiley.
  77. Selley, N. J. (1981). Children’s Understanding of Atoms and Molecules. Kingston:Kingston Polytechnic.
  78. Skamp, K. (1999). Are atoms and molecules too difficult for primary children? School Science Review, 81(295), 87-96.
  79. Stavy, R. (1988). Children’s conception of gas. International Journal of Science Education, 10(5), 553-560.
  80. Stepans, J.(1991). Developmental patterns in students’ understanding of physics concepts. In S. M. Glynn, R. H. Yeany & B. K. Britton(eds.), The psychology of learning science . (pp.89-115). Hillsdale, NJ : Lawrence Erlbaum Associates.
Times Cited
  1. 劉俊庚(2011)。探討模型與建模對於學生原子概念學習之影響。臺灣師範大學科學教育研究所學位論文。2011。1-405。