Title

融入討論的雙重情境學習模式對學生血糖恆定概念學習之影響

Translated Titles

The Effect of Integrating Disscussion into Dual Situated Learning Model on

Authors

林雅姿

Key Words

小組討論 ; 血糖恆定概念 ; 表面特徵 ; 雙重情境學習模式 ; 類比教學 ; small group discussion ; concepts of homeostasis of blood sugar ; surface feature ; DSLM ; analogical teaching

PublicationName

臺灣師範大學生命科學研究所學位論文

Volume or Term/Year and Month of Publication

2011年

Academic Degree Category

碩士

Advisor

張文華

Content Language

繁體中文

Chinese Abstract

本研究旨在探討透過融入討論的雙重情境學習教學模式,對學生血糖恆定概念學習成就及類比思考的影響。研究採準實驗設計,研究對象為台北市某國中七年級學生兩個班級,合計72人。依研究設計分為融入討論的雙重情境學習組 (n=38)、未融入討論的雙重情境學習組 (n=34)。研究者依照雙重境情學習模式設計並進行三個教學事件,協助學生學習血糖恆定。其中融入討論組在雙重情境學習模式步驟中針對較抽象困難概念加入小組的討論,希望藉此讓學生互相交流知識,以更利於概念學習。在雙重情境教學前後施測「學習成就測驗」,從t-test、共變數分析及質性分析結果發現,兩組學生的血糖恆定成就測驗得分均明顯成長,但融入討論組並未優於未融入討論組。而由融入討論組的簡答題結果,可看出在血糖調節機制高層次概念提升的效果。從類比學習單中發現融入討論組的類比思考成果,提出的類比內容相似度高,且偏向以表面特徵相似性進行類比,在未融入討論組的類比思考呈現上較具多樣性。

English Abstract

This study aimed to explore the impact of integrating discussion into Dual-Situated Learning Model (DSLM) on students’ conceptual understanding of homeostasis of blood sugar and analogical reasoning. This study applied quasi-experimental design. The participants were 72 7th graders from two classes. The two classes were randomly assigned to two groups- integrating discussion DSLM (d-DSLM) group and DSLM group. Three dual situated learning events were designed according to dual situated learning model. The d-DSLM students discussed and expressed their ideas with group members for clarifying selected abstract science concept. Students’ pre- and post-measures on ‘the Achievement Test of Homeostasis of Blood Sugar’ were collected and analyzed. From the t-test, ANCOVA and qualitative data analysis, we found that both groups significantly improved their conceptual understanding, but the d-DSLM group was not better than the DSLM group. And from the short answer of achievement, we found that the d-DSLM group scored significantly higher at high level concept of blood sugar regulation mechanism. Furthermore, the analogies generated by the d-DSLM group were similar in contents and the students preferred to use surface feature on mapping, the analogies generated by the control group were diverse in contents.

Topic Category 理學院 > 生命科學研究所
生物農學 > 生物科學
Reference
  1. 王千倖 (1996)。超媒體在學習「班級經營」上的應用。教育資料
    連結:
  2. 李暉、郭重吉 (2000)。科學話語與科學概念的學習:以國中生理化課學習為例。科學教育,10,3-29。
    連結:
  3. 林陳涌、徐毓慧(2002)。國一學生對血糖恆定性的先前概念。科學教育學刊,10 (4),373-387。
    連結:
  4. 邱美虹 (2000)。概念改變研究的省思與啟示。科學教育學刊,8(1),1-34。
    連結:
  5. 吳復中 (2001)。概念生態對國中學生呼吸作用概念發展之影響。台北市: 國立台灣師範大學生物研究所碩士論文(未出版)。
    連結:
  6. 柯靜宜、張文華、郭重吉 (2004)。統整教學模組實施下之小組互動及知識共同建構。科學教育學刊,12 (1),1-26。
    連結:
  7. 徐毓慧 (2000)。利用前置組織因子增進恆定概念學習之研究。國立台灣師範大學生物研究所之碩士論文(未出版)。
    連結:
  8. 曹雅雯 (2003)。以概念地位(status)的觀點看小組討論中的概念改變---以生態單元為例。國立台灣師範大學生物學系碩士論文。
    連結:
  9. 陳明鈺 (2007)。國中生循環系統概念改變之研究-雙重情境學習模式(DSLM)之影響。國立台灣師範大學生命科學研究所碩士論文(未出版)。
    連結:
  10. 楊文金 (2000)。同儕友伴觀關係對六年級學生科學問題組隊討論的影響分析。科學教育學刊,8 (2),123-140。
    連結:
  11. 黃佳杏 (2007)。從突現過程本體面向探討生物恆定性概念改變-以七年級學生為例。國立台灣師範大學科學教育研究所碩士論文(未出版)。
    連結:
  12. 劉俊庚 (1991)。迷思概念與概念改變教學策略之文獻分析-以概念構圖和後設分析模式探討其意涵與影響。國立台灣師範大學科學教育研究所碩士論文。
    連結:
  13. 劉家成 (1992)。以動態評量探究國中學生浮力概念的心智模式及概念改變之歷程。國立台灣師範大學科學教育研究所碩士論文(未出版)。
    連結:
  14. 劉純興 (1999)。小組討論的類比學習對物理概念轉變之研究。國立彰化師範大學科學教育研究所碩士論文。
    連結:
  15. Basili, P. A. & Sanford, J. P. (1991). Conceptual change strategies and cooperative group work in chemistry. Journal of Research in Science Teaching, 28(4), 293-304.
    連結:
  16. Carey, S. (1986). Cognitive science and science education. American Psychologist, 1, 1123-1130.
    連結:
  17. Chi, M. T. H. (1992). Conceptual change within and across ontological categories: Implications for learning and discovery in science. In R. Giere (Ed.), Cognitive models of science: Minnesota studies in the philosophy of science (pp. 129-186). Minneapolis: University of Minnesota Press.
    連結:
  18. Chi, M. T. H., Slotta, J. D., & Leeuw, N. de (1994). From things to processes: A theory of conceptual change for learning science concepts. Learning and Instruction, 4, 27-43.
    連結:
  19. Driver, R. (1989). Students’ conceptions and the learning of science, International Journal of Science Education, 11, 481-490.
    連結:
  20. Duit, R. (1991). On the role of analogies and metaphors in learning science. Science Education, 75(6), 649-672.
    連結:
  21. Duit, R., & Treagust, D. F. (2003). Conceptual change: A powerful framework for improving science teaching and learning. International Journal of Science Education, 25(6), 671-688.
    連結:
  22. Flick, L. (1991). Where concepts meet preceps: Stimulating analogical thought in children. Science Education, 75(2), 215-230.
    連結:
  23. Gentner, D. (1983). Structure mapping: a theoretical framework for analogy. Cognitive Science, 7, 155-170.
    連結:
  24. Holyoak, K. J. (1987). Surface and structural similarity in analogical tranxfer. Cognitive Science, 15(4), 332-340.
    連結:
  25. Holyoak, k. J., & Thagard, p. (1989). Analogical mapping by constrain satisfaction. Cognitive Science, 13(3), 295-355.
    連結:
  26. analogical mapping: A comparison of three models. Cognitive Science,
    連結:
  27. Kuhn, T. S. (1962). The structure of scientific revolutions. Chicago, IL: The University of Chicago Press.
    連結:
  28. Lawson, A. E. (1993). The Importance of Analogy: A Prelude to the Special Issue. Journal of Research in Science Teaching,30(10), 1213-1214.
    連結:
  29. Lawson, D. I. & Lawson, A. E. (1993). Neural Principles of Memory and a Neural Theory of Analogical Insight. Journal of Research in Science Teaching,30(10), 1327-1348.
    連結:
  30. Osborne, R., & Gilbert, J. (1980). A method for investigating concept understanding in science. European Journal of Science Education, 2, 311–321.
    連結:
  31. Pines, A. L., & West. L. (1986). Conceptual understanding and science learning: An interpreration of research within a source-of-knowledge framework. Science Education, 70(5), 583-604.
    連結:
  32. Posner, G. J., Strike, K. A., Hewson, P. W., & Gertzog, W. A. (1982). Accommodation of a scientific conception: Toward a theory of conceptual change. Science Education, 66(2), 211-227.
    連結:
  33. She, H. C. (2002). Concepts of a higher hierarchical level require more dual situated learning events for conceptual change: A study of air pressure and buoyancy. International Journal of Science Education, 24(9), 981-996.
    連結:
  34. She, H. C. (2003). DSLM Instructional approach to conceptual change involving thermal expansion. Research in Science and Technological Education, 21(1), 43-54.
    連結:
  35. She, H. C. (2004a). Fostering radical conceptual change through dual-situated learning model. Journal of Research in Science Teaching, 41(2), 142-164.
    連結:
  36. She, H. C. (2004b). Facilitating changes in ninth grade students’ understanding of dissolution and diffusion through DSLM instruction. Research in Science Education, 34, 503-525.
    連結:
  37. Simpson, W. D., & Marek, E. A. (1988). Understanding and misconceptions of biology conceptions held by students attending small high schools and students attending large high schools. Journal of Research in Science Teaching, 25(5), 361-374.
    連結:
  38. Soloman, J. (1987).Social influences on the construction of pupils’ understanding of science. Studies in Science Education,14,63-82.
    連結:
  39. Treagust, T. F., Harrison, A. G. & Venville, G. J. (1998). Teaching science effectively with analogies: An approach for preservice and in-service teacher education. Journal of Science Teacher Education, 85-101.
    連結:
  40. Vosniadou, S., & Brewer, W. F. (1987). Theories of knowledge restructuring in development. Review of Educational Research, 57, 51-67.
    連結:
  41. Waheed, T., & Lucas, A. M. (1992). Understanding interrelated topics: Photosynthesis at age 14+. Journal of Biological Education, 26(3), 193-199.
    連結:
  42. Vygostky, L. S. (1978). Tool and symbol in child Development. In M. Cole (Ed.), Mind in society: The development of higher psychological processes. pp.19-30. Massachusetts: Havard Universuty Press.
    連結:
  43. Westbrook, S. L., & Marek, E. A. (1992). A cross-age study of students understanding of the concept of homeostasis. Journal of Research in Science Teaching, 29(1), 51-61.
    連結:
  44. Wong, E. D. (1993). Self-generated Analogies as a Tool for Constructing and Evaluating Explanations of Scientific Phenomena. Journal of Research in Science Teaching, 30(4), 367-380.
    連結:
  45. Zeitoun, H. H. (1984). Teaching scientific analogies: A proposed model. Research in Science and Technology Education, 2, 107-125.
    連結:
  46. 中文部分
  47. 與研究,12,43-49。
  48. 石曉芳 (2005)。科學推理結合雙重情境學習模式課程對國中生 遺傳概念重建與推理能力提之昇影響。國立交通大學理學院碩士在職進修班碩士論文(未出版)。
  49. 易國榮、佘曉清(2004)。網路化雙重情境學習模式對國小學生的真菌概念改變之研究。論文發表於中華民國第二十屆科學教育學術研討會。
  50. 邱美虹 (1993)。類比與科學概念的學習。教育研究資訊,1(6),
  51. 79-90。
  52. 唐小媛 (2003)。國中生另有概念及其成因分析與概念改變教學研究。國立交通大學教育研究所碩士論文(未出版)。
  53. 陳怡仁 (2006)。應用數位化雙重情境學習課程探討多媒體呈現形式對國中生遺傳概念建構之影響。國立交通大學教育研究所碩士論文(未出版)。
  54. 黃天中、洪英正 (1992):心理學。台北:桂冠書局。
  55. 黃幸美 (1995)。類比推理思考及其在教學上的應用。教育研究   資訊,3 (3),128-142。
  56.   黃台珠等譯 (2002)。促進理解之科學教學。台北:心理出版社。
  57. 彭琇瑜 (2008)。數位化雙重情境學習模式中學生學習動機與概念改變之研究-以原子分子概念學習為例。國立彰化師範大學科學教育研究所碩士論文(未出版)。
  58. 廖啟宏 ( 2007)。國中學生在不同的“雙重情境學習模式”環境下期反應速率概念學習之成效之研究。國立彰化師範大學科學教育研究所碩士論文(未出版)。
  59. 賴美杏(2000)。從小組討論看問題與生物概念的練習。國立高雄師範大學科學教育研究所碩士論文。
  60. 英文部分
  61. Brown, A. L. & Palincsar A. S. (1989). Guided, copperative learning and individual knowledge acquisition. In L. B. Resinck (Ed.), Knowing and instruction (pp.393-452). Hillsdale, New Jersey: Erlbaum.
  62. Brown, D. E. (1993). Refocusing core intuitions: A concretizing role
  63. For analogy in conceptual change. Journal of Research in Science Teacching, 30(10), 1273-1290.
  64. Carey, S. (1985). Conceptual change in childhood. Cambridge, MA: MIT Press.
  65. Edward, D. & Mercer, N. (1987). Common Knowledge:the development of understanding in classroom. London: Routledge.
  66. Fisher, K., & Lipson, J. (1985). Information processing interpretation
  67. of errors in college science learning. Instructional Science, 14(1), 49-74.
  68. Gallas, K. (1995). Talking their way into science. New York: Teacher College Press.
  69. Keane, M. T., Ledgeway, T., & Duff, S. (1994). Constraints on
  70. 18, 387-438.
  71. Linn, M. C., & Burbules, N. C. (1993). Construction of knowledge and group learning. In K. Tabin. (Ed), The praction of constructivism in science eduction(pp. 91-99).Washington: AAAS press.
  72. McCloskey, M. (1983). Naïve theories of motion. In D. Gentner & A. Stevens (Eds.), Mental models (pp.299-324). Hillsdale, NJ: Lawrence Erlbaum Associates, Inc.
  73. Pfundt, H., & Duit, R. (1991). Bibliography: Students’ alternative framework and science education (3rd Ed.). Kiel, West Germany: IPN.
  74. Stepans, J. I., Beiswenger, R. E., & Dyche, S. (1986). Misconceptions die hard. Science Teacher, September, 65-69.
  75. Strike, K.A., & Posner, G.J. (1985). A conceptual change view of learning and understanding. In L.H.T. West & A.L. Pines (Eds.), Cognitive structure and conceptual change (pp. 189-210). Orlando: Academic Press, Inc.
  76. Tang, H. Y., She, H. C., & Lee, Y. M. (2005a). Investigating middle school students’ alternative conceptions and the corresponding sources involving animal reproduction. Paper presented for the National Association for Research in Science Teaching 2005 Conference, Dallas, Texas.
  77. Tang, H. Y., She, H. C., & Lee, Y. M. (2005b). Promoting middle school students’ conceptual change involving mitosis and meiosis with a DSLM instructional approach. Paper presented for the National Association for Research in Science Teaching 2005 Conference, Dallas, Texas.
  78. Thagard, P. (1992). Conceptual revolutions. Princeton, NJ: Princeton University Press.
  79. Zeitoun, H. H. (1988). The relationship between abstract concept achievement and prior knowledge, formal reasoning ability, and sex among some Egyptian secondary school students. Paper presented at the Annual Meeting of the National Association for Research in Science Teaching, Lake of the Ozarks, MO.