Title

以概念演化探討物質三態變化之教科書內容與教學對學童心智模式發展歷程之影響

Translated Titles

Investigating the influence of textbooks and instruction about phase transitions on student’s mental model via the use of conceptual evolutionary approach

Authors

吳文龍

Key Words

教科書 ; 心智模式 ; 概念演化假說樹 ; 物質三態變化 ; textbook ; mental model ; conceptual evolutionary tree ; phase transitions

PublicationName

臺灣師範大學科學教育研究所學位論文

Volume or Term/Year and Month of Publication

2012年

Academic Degree Category

博士

Advisor

邱美虹

Content Language

繁體中文

Chinese Abstract

本研究綜合多重的研究資料探討學生物質三態變化之心智模式發展歷程,研究內容可分為四個不同的研究主題,據此,四個主要的研究目的分別為:(1)實施跨年級物質三態變化問卷調查,瞭解學生學習現況及檢驗物質三態變化概念演化假說樹的合適性與符合度;(2)透過相關研究文獻,建立理論的物質三態變化之心智模式及認知特徵,藉由系統發育分類學技術建構物質三態變化概念演化假說樹;(3)分析國小、國中、高中階段科學教科書之物質三態變化單元,以概念發展點探討教科書內容結構及與相關概念的銜接,建立各年級的概念教學進程表,並比較不同版本差異;(4)綜合前述三種不同的研究方法確立學生物質三態變化概念發展路徑後,在國小六年級進行「粒子本質導向之物質三態變化二階段教學」,探討不同概念內容與次序對學生學習物質三態變化的影響。 在選樣的部份,研究主題一為四到十二年級跨年級概念調查,研究者考量物質三態變化是日常生活中經常接觸到的現象,且在各年的教學活動亦會應用相關概念,因此受測者以四到十二年級逐年收集的方式收集資料(共832人);研究主題三為教科書分析,以台灣九十九學年度現行之教科書版本為主,國小階段、國中階段及高中階段共有九種不同版本;在研究主題二實驗教學研究的部份,因研究發現五年級後即超過半數學生具有部份粒子概念,因此以國小六年級四個班級(共110人)進行教學活動。 本研究之研究工具及實驗教學包含:「粒子本質暨物質三態變化問卷」、「系統分類學統計軟體(PAUP* 4.0)」、「教科書分析編碼表」、「學習歷程記錄表」、「自然科學習動機問卷」及「粒子本質導向之物質三態變化二階段教學」。「粒子本質暨物質三態變化問卷」用於跨年級概念調查及配合實驗教學之施測,主要在瞭解學生對於物質三態變化概念的理解程度;PAUP* 4.0常用於系統分類學上,主要用來判斷物種親源遠近的統計工具,本研究用以分析物質三態變化心智模式及認知特徵,透過此軟體計算出可能的概念演化樹;「教科書分析編碼表」為分析不同版本教科書相關單元之編碼工具;「學習歷程記錄表」及「自然科學習動機問卷」為教學期間及教學後收集學生對課程內容的反應,以輔助研究結果的詮釋。 「粒子本質導向之物質三態變化二階段教學」包含微觀粒子概念與物質三態變化兩部份,此教學法根據物質三態變化概念演化樹之發展路徑做為教學的組織架構,分別安排合適教學內容與次序。二階段實驗教學階段包含第一階段粒子本質教學(角色扮演)及巨觀三態物質教學(一般講述);第二階段物質三態變化教學(角色扮演組及一般講述組)兩個部份。第一階段為建立不同的先前概念做為後續教學的基礎,第二階段為採用兩種不同的教學法進行物質三態變化教學。本研究以角色扮演進行粒子運動的模擬包含三大特點:「眼罩」模擬粒子隨機運動的無方向性及無目的性;「帽子顏色(紅、黃、綠)」代表不同粒子運動速率;「魔鬼氈手套」代表不同吸引力。因國小階段並未安排微觀粒子相關的課程,因此研究者以學期末時間進行教學,教學時間為五至六堂課。 本研究之研究結果發現:(1)物質三態變化概念調查指出學生對於巨觀的概念發展早且已高比例的正確性,但在微觀的部份,大部份國中階段學生尚未建立完整的微觀粒子概念,要到高中階段才會出現高比例的科學概念;而物質三態變化概念的發展大致呈現逐年成長的狀況,但學生對於三態變化中凝結現象答對比例大於蒸發現象,顯示部份的學生仍無法以一致的科學概念解釋三態變化的物相轉變;(2)本研究之物質三態變化概念演化樹22可分為A、B、C、D區,各區出現不同的認知特徵,物質觀點中的混合觀與粒子觀分別在B區及D區出現,由相伴出現的認知特徵可看出各類心智模式對物質三態變化的不同解釋方式;(3)本研究之教科書分析結果認為粒子本質概念在國中階段的教學比重低,即使提到粒子概念也僅解釋物質的微觀結構,對於三態變化時粒子運動觀點要到高一時才有正式的教學活動,因此本研究下一階段實驗教學的主要目標增加粒子本質概念的內容,並瞭解粒子本質概念對學習物質三態變化時的影響;(4)在進行四組實驗組的實驗教學後,本研究之粒子本質教學能顯著地幫助學生學習第二階段的物質三態變化,並且即使第二階段的教學活動未使用角色扮演的方式進行,學生仍能理解物質三態變化概念,達到更好的學習成效。最後,本研究建議概念發展相關研究應採用不同的研究方式,同時進行整合的分析及實驗教學,才能具體對未來課程安排提供合適的建議。

English Abstract

This study adopted multiple research methods to investigate the mental model of phase transitions and developmental processes. There were three different methods and one teaching study in the study, including the cross-year survey, the construction of conceptual evolutionary tree and the analysis of current textbook in Taiwan. Two-stage teaching module was designed by integrating the results of above-mentioned three methods. Therefore, there are four purposes of research: (1) to investigate student’s conceptual development of phase transitions via the cross-year survey; (2) to construct the conceptual evolutionary tree with Phylogenetic technique; (3) to analyze the contents and sequences of phase transitions in the textbooks from primary school to high school; (4) to sum up the results to develop the teaching module and applied to primary school students. The textbook sampling was currently implemented in Taiwan. The units of textbook included (1) “Transform of Water” , “Weather” in primary school; (2) “Transform of Matter” , “Heat Effect on Matter” in junior high school; (3)”Basic Physics”, “Chemistry” , “Physics” in senior high school. The participants were chosen for cross-year conceptual survey (n=832) and teaching study (n=110). The instruments included “Questionnaire of Particle Nature and Phase Transitions (QPP)”, “Coding schema of Textbook (CST)”, “Questionnaire of motivation to learn”, ” Particle-Oriented and Two-Step Teaching Module of Phase Transitions, PTTM”. QPP was designed to investigate student’s understanding of phase transitions and applied to cross-year conceptual survey and pretest, post-test, retention test in teaching study. According to evolutionary pathways, PTTM was two-step designed. And, the first step which focused on particle nature was the conceptual background of next step. The teaching arrangement lasted five to six classes in the sixth grade. The results of this study were shown as below: (1) high percentage of primary school students held the correct macroscopic concepts of phase transitions. But even junior high school students did not construct the comprehensive concepts of particle nature until senior high school. Most of related concepts in condensation phenomena were developed earlier then in evaporation phenomena. Students cannot explain phase transition with consistent scientific principles; (2) the evolutionary tree 22 could be divided into A, B, C, D area. At B and D area, there were mixed view and particle view of matter. Because of the different view of matter, there were the specific cognitive characters and states in the pathways of evolutionary tree; (3) according to analysis of textbook, microscopic particle was taught in junior high school, but the comprehensive concepts were few until senior high school. In junior high school, the textbook content focused on the particulate structure of three states. The particle movement and attraction between particles were mentioned until senior high school; (4) according to results of four group designed experiment, PTTM significantly improve student’s learning of phase transition in primary school after two-step teaching. And, all students who accepted the teaching of particle nature in the first step could also have the same effect even though they did not be taught by role-play in the second step. Finally, this study suggested that conceptual developmental research should approach comprehensive analysis via multiple methods and teaching experiments. Then, the results would make appropriate suggestions for future curriculum.

Topic Category 理學院 > 科學教育研究所
社會科學 > 教育學
Reference
  1. 方稚芳、楊國揚(1998)。國民中學教科用書審查制度之探討。課程與教學季刊,1(1),17-26。
    連結:
  2. 王藍亭、盧伊君(2010)。書籍編排之視覺圖像呈現研究-以國小六年級自然科教科書爲例。中華印刷科技年報,578-587。
    連結:
  3. 呂紹海、巫俊明(2008)。國小「自然與生活科技」教科書中科學史內容之分析。新竹教育大學教育學報,25(2),1-31。
    連結:
  4. 杜依樺(2008)。國小自然課本「空氣」單元教科書文本分析。科學教育月刊,313,2-8。
    連結:
  5. 辛怡瑩、邱美虹(2010)。以概念演化樹探討跨年級學生演化概念之發展。科學教育學刊,18(2),131-153。
    連結:
  6. 周珮儀(2005)。我國教科書研究的分析:1979-2004。課程與教學季刊,8(4),91-116。
    連結:
  7. 周珮儀、鄭明長(2008)。教科書研究方法論之探究。課程與教學季刊,11(1),193-222。
    連結:
  8. 邱美虹(2000)。概念改變研究的省思與啟示。科學教育學刊,8(1),1-34。
    連結:
  9. 邱韻如(2010)。高中物理課程、教科書與教學:以「靜力平衡」為例。物理教育學刊,11(1),45-55。
    連結:
  10. 林財庫(2005)。創造進化觀及其在科學教育上的一些應用。科學教育學刊,13(2),141-168。
    連結:
  11. 林靜雯、邱美虹(2005)。整合類比與多重表徵研究取向探究多重類比設計對兒童電學概念學習之影響。科學教育學刊,13(3),317-345。
    連結:
  12. 林靜雯(2005)。由概念演化觀點探究不同教科書教-學序列對不同心智模式學生電學學習之影響(未出版之博士論文)。國立台灣師範大學,台北市。
    連結:
  13. 林靜雯、邱美虹(2009)。探究以學生心智模式為設計基礎之教-學序列研究對學生電學學習之影響。科學教育學刊,17(6),481-507。
    連結:
  14. 張志康(2009)。從概念改變理論探究建模教學對學生力學心智式與建模能力之影響(未出版之博士論文)。國立台灣師範大學科學教育研究所,台北市。
    連結:
  15. 張志康、林靜雯、邱美虹(2009)。跨年級中學生串並聯電路心智模式的研究。科學教育月刊,317,2-17。
    連結:
  16. 湯偉君(2008)。以解釋本質探討中學演化論之教科書內容與教學(未出版之博士論文)。台灣師範大學科學教育研究所,台北市。
    連結:
  17. 黃政傑(2003)。重建教科書的概念與實務。課程與教學季刊,6(1),1-12。
    連結:
  18. 黃鈺翔(2009)。國中生微觀粒子概念的發展(未出版之碩士論文)。國立台灣師範大學化學系,台北市。
    連結:
  19. 葉佳承、楊文金、廖斌吟、賴廷倫、林芯聿(2009)。光合作用文本對學生概念學習的影響。科學教育學刊,17(4),343-365。
    連結:
  20. 盧秀琴(2005)。探討教科書與中小學學生學習細胞相關概念的關係。科學教育學刊,13(4),367-386。
    連結:
  21. 譚光鼎(2008)。被扭曲的他者:教科書中原住民偏見的檢討。課程與教學季刊,11(4),27-49。
    連結:
  22. Adadan, E., Trundle, K. C., & Irving, K. E. (2010). Exploring grade 11 students' conceptual pathways of the particulate nature of matter in the context of multirepresentational instruction. Journal of Research in Science Teaching, 47(8), 1004-1035.
    連結:
  23. Atkinson, Q. D., & Gray, R. D. (2005). Curious parallels and curious connections- Phylogenetic thinking in biology and historical linguistics. Systematic Biology, 54(4), 513-526.
    連結:
  24. Ayas, A., Özmen, H., & Çalik, M. (2010). Students' conceptions of the particluate nature of matter at secondary and tertiary level. International Journal of Science and Mathematics Education, 8(1), 165-184.
    連結:
  25. Bar, V., & Galili, I. (1994). Stages of children’s views about evaporation. International Journal of Science Education, 16, 157-174.
    連結:
  26. Boostorm, R. (2001). Essay review: Whither textbooks? Curriculum Studies, 33(2), 229-245.
    連結:
  27. Brooks, D. R., & McLennan, D. A. (1991). Phylogeny, ecology, and behavior: a research program in comparative biology. London: The University of Chicago Press.
    連結:
  28. Campbell, D. T. (1988). Methodology and epistemology for social science: Selected Papers. Chicago: University of Chicago Press.
    連結:
  29. Chang, H. Y., Quintana, C., & Krajcik, J. S. (2010). The impact of designing and evaluating molecular animations on how well middle school students understand the particulate nature of matter. Science Education, 94(1), 73-94.
    連結:
  30. Chi, M. T. H. (2005). Commonsense conceptions of emergent processes: Why some misconceptions are robust. The Journal of the Learning Sciences, 14(2), 161-199.
    連結:
  31. Chi, M. T. H., De Leeuw, N., Chiu, M. H., & LaVancher, C. (1994). Eliciting self-explanations improves understanding. Cognitive Science, 18, 439-477.
    連結:
  32. Chinn, C. A., & Brewer, W. F. (1993). The role of anomalous data in knowledge acquisition: A theoretical framework and implications for science instruction. Review of Educational Research, 63, 1-49.
    連結:
  33. Chinn, C. A., & Brewer, W. F. (1998). An empirical test of a taxonomy of responses to anomalous data in science. Journal of Research in Science Teaching, 35(6), 623-654.
    連結:
  34. Cox, C. B., & Moore, P. D. (2005). Biogeography: An Ecological and Evolutionary Approach (7th Edition ed.). John Wiley and Sons, Inc.
    連結:
  35. Coştu, B., Ayas, A., & Niaz, M. (2010). Promoting conceptual change in first year students' understanding of evaporation. Chemistry Education Research and Practice, 11(1), 5-16.
    連結:
  36. Croft, W. (2008). Evolutionary Linguistics. Annual Review of Anthropology, 37(1), 219-234.
    連結:
  37. DeNeve, K. M., & Heppner, M. J. (1997). Role Play Simulations: The Assessment of an Active Learning Technique and Comparisons with Traditional Lectures. Innovative Higher Education, 21(3), 231-246.
    連結:
  38. De Vos, W., & Verdonk, A. H. (1996). The particulate nature of matter in science education and in science. Journal of Research in Science Teaching, 33, 557-664.
    連結:
  39. diSessa, A. (1993). Towards an epistemology of physics. Cognition and instruction, 10(2 & 3), 105-225.
    連結:
  40. Dunn, M. (2005). Structural phylogenetics and the reconstruction of ancient language history. Science, 309(5743), 2072-2075.
    連結:
  41. Duveen, J., & Solomon, J. (1994). The Great Evolution Trial: Use of Role-Play in the Classroom. Journal of Research in Science Teaching, 31(5), 575-582.
    連結:
  42. Erdal, S. (2009). Prospective primary school teachers’ perceptions on boiling and freezing. Australian Journal of Teacher Educational Research and Reviews, 34(4), 27-38.
    連結:
  43. Franco, C., & Colinvaux, D. (2000). Grasping mental models. In J. K. Gilbert. & C. J. Boulter (Eds.), Developing Models in Science Education ( pp. 93-118). Netherlands: Kluwer Academic Publishers.
    連結:
  44. Han, J., & Roth, W.-M. (2006). Chemical inscriptions in Korean textbooks: Semiotics of macro- and microworld. Science Education, 90, 173-201.
    連結:
  45. Henning, W. (1965). Phylogenetic systematics. Annual Review of Entomology, 10, 97-116.
    連結:
  46. Hull, D. L. (1988). Science as a Process: An Evolutionary Account of the Social and Conceptual Development of Science. Chicago: University of Chicago Press.
    連結:
  47. Johnson-Laird, P. N. (1983). Mental models: Towards a cognitive science of language, inference, and consciousness. Cambridge, MA: Harvard University Press.
    連結:
  48. Johnson-Laird, P. N. (1989). Mental models. In M. I. Posner (Ed.), Foundations of cognitive cience ( pp. 467-499). Cambridge, MA.: The MIT Press.
    連結:
  49. Johnson, P. (1998a). Progression in children's understanding of a 'basic' particle theory: a longitudinal study. International Journal of Science Education, 20(4), 393-412.
    連結:
  50. Johnson, P. (1998b). Children’s understanding of changes of state involving the gas state, Part 1: Boiling water and the particle theory. International Journal of Science Education, 20(5), 567–583.
    連結:
  51. Johnson, P., & Papageorgiou, G. (2010). Rethinking the introduction of particle theory: A substance-based framework. Journal of Research in Science Teaching, 47(2), 130-150.
    連結:
  52. Kessler, K., Duwe, I., & Strohner, H. (1999). Grounding mental models:Subconceptual dynamics in the resolution of reference in discourse. In G. Rickheit & C. Habel (Eds.), Mental Models in Discourse Processing and Reasoning ( pp. 169-191). Amsterdam: Elsevier Science B.V.
    連結:
  53. Lemke, J. L. (1998). Multiplying meaning: Visual and verbal semiotics in scientific text. In J. R. Martin & R. Veel (Eds.), Reading science: Critical and functional perspectives on discourses of science ( pp. 87 - 113). London: Routledge.
    連結:
  54. Löfgren, L., & Helldén, G. (2008). Following young students’ understanding of three phenomena in which transformations of matter occur. International journal of science and mathematics education, 6(3), 481-504.
    連結:
  55. Mayr, E. (1982). The growth of biological thought: diversity, evolution, and inheritance Cambridge, MA: Harvard University Press.
    連結:
  56. Meheut, M. (2004). Teaching-learning sequences: aims and tools for science education research. International Journal of Science Education, 26(5), 515-535. 
    連結:
  57. Mitchell, I. J. (1993). Teaching for quality learning. Unpublished. Ph. D. thesis, Monash University.
    連結:
  58. Morrone, J. J. (2005). Cladistic biogeography: identity and place. Journal of Biogeography, 32(7), 1281-1284.
    連結:
  59. Novick, S., & Nussbaum, J. (1978). Junior high school pupils' understanding of the particulate nature of matter : An interview study. Science Education, 62(3), 273-281.
    連結:
  60. Novick, S., & Nussbaum, J. (1981). Pupils' understanding of the particulate nature of matter: a cross-age study. Science Education, 65(2), 187-196.
    連結:
  61. Nussbaum, J. (1989). Classroom conceptual change: Philosophical perspectives. International Journal of Science Education, 11, 530-540.
    連結:
  62. Onwu, G. O., & Randall, E. (2006). Some aspects of students' understanding of a representational model of the particulate nature of matter in chemistry in three different countries. Chemistry Education Research and Practice, 7(4), 226-239.
    連結:
  63. Osborne, R. J., & Cosgrove, M. M. (1983). Children’s conceptions of the changes of state of water. Journal of Research in Science Teaching, 20, 825-838.
    連結:
  64. Othman, J., Treagust, D. F., & Chandrasegaran, A. L. (2008). An investigation into the relationship between students' conceptions of the particulate nature of matter and their understanding of chemical bonding. International Journal of Science Education, 30(11), 1531-1550. 
    連結:
  65. Pierri, E., Karatrantou, A., & Panagiotakopoulos, C. (2008). Exploring the phenomenon of 'change of phase' of pure substances using the Microcomputer-Based-Laboratory (MBL) system. Chemistry Education Research and Practice, 9(3), 234-239.
    連結:
  66. Posner, J., Strike, K., Hewson, P., & Gertzog, W. (1982). Accommodation of a scientific conception: Toward a theory of conceptual change. Science Education, 66, 211-227.
    連結:
  67. Prain, V., Tytler, R., & Peterson, S. (2009). Multiple Representation in Learning About Evaporation. International Journal of Science Education, 31(6), 787-808.
    連結:
  68. Roth, W.-M., Bowen, G. M., & McGinn, M. K. (1999). Differences in graph-related practices between high school biology textbooks and scientific ecology journals. Journal of Research in Science Teaching, 36(9), 977– 1019.
    連結:
  69. Stavy, R. (1990). Children's conceptions of changes in the state of matter: From liquid (or solid) to gas. Journal of Research In Science Teaching, 27(3), 247-266.
    連結:
  70. nichoStrike, K. A., & Posner, G. J. (1992). A revisionist theory of conceptual change. In R. Duschl & R. Hamilton (Eds.), Philosophy of science, cognitive science and educational theory and practice. Albany, NY: SUNY Press.
    連結:
  71. Tehrani, J., & Collard, M. (2002). Investigating cultural evolution through biological phylogenetic analyses of Turkmen textiles. Journal of Anthropological Archaeology, 21, 443–463.
    連結:
  72. Treagust, D. F., Chandrasegaran, A., Crowley, J., Yung, B., Cheong, I., & Othman, J. (2010). Evaluating students' understanding of kinetic particle theory concepts relating to the states of matter, changes of state and diffusion: a cross-national study. International Journal of Science and Mathematics Education 8(1), 141-164.
    連結:
  73. Treagust, D. F., & Chittleborough, G. (2001). Chemistry: A matter of understanding representations. In P. Stefinee (Ed.), Advances in Research on Teaching (Vol. 8, pp. 239-267): Emerald Group Publishing Limited.
    連結:
  74. Treagust, D. F., Chittleborough, G., & Mamiala, T. L. (2003). The role of sub-microscopic and symbolic representations in chemical explanation. International Journal of Science Education, 25(11), 1353-1368.
    連結:
  75. Tsitsipis, G., Stamovlasis, D., & Papageorgiou, G. (2009). The effect of three cognitive variables on students' understanding of the particulate nature of matter and its changes of state. International Journal of Science Education, 32(8), 987-1016.
    連結:
  76. Van Veller, M. G. P., Brooks, D. R., & Zandee, M. (2003). Cladistic and phylogenetic biogeography: The art and the science of discovery. Journal of Biogeography, 30, 319-329.
    連結:
  77. Vosniadou, S. (1994). Capturing and modeling the process of conceptual change [special issue]. Learning and Instruction, 4, 45-69.
    連結:
  78. Vosniadou, S., & Brewer, W. F. (1992). Mental models of the earth: A study of conceptual change in childhood. Cognitive Psychology, 24, 535-585.
    連結:
  79. Vosniadou, S., Skopeliti, I., & Ikospentaki, K. (2004). Modes of knowing and ways of reasoning in elementary astronomy. Cognitive Development, 19, 203-222.
    連結:
  80. Williamson Vickie, M. (2008). The particulate nature of matter: An example of how theory-based research can impact the field. Nuts and Bolts of Chemical Education Research, 976, 67-78.
    連結:
  81. 中文
  82. 王美芬(1997)。爭鳴:教科書的開放與評鑑──比較中美國小自然科課程國家標準。國民教育,37(3),20-23。
  83. 吳怡嫺、邱美虹(2006)。探究高中生氣體粒子概念之心智表徵與課本表徵之關聯性。中華民國第二十二屆科學教育學術研討會發表之論文,國立台灣師範大學。
  84. 林清山(1992)。心理與教育統計學。台北市: 台灣東華書局。
  85. 教育部(2006)。九年一貫課程自然與生活科技學習領域課程綱要(中英對照)。教育部暨國立台灣師範大學編印。
  86. 黃政傑、李隆盛(1994)。國民中小學教科書審定制度與審查標準之研究。國科會專題研究成果報告(編號:RF8705-0012)。
  87. 葉川榮(2005)。國內六本原住民教育教科書之評析。屏中學報,13,377-386。
  88. 賴慶三(1994)。國民小學中年級自然科學改編本教科用書教材內容調查研究。國科會專題研究成果報告(編號:PC8506-1249)。
  89. 鍾曉蘭、邱美虹(2007)。探究高二學生理想氣體本質的心智模式演變過程。中華民國第二十三屆科學教育學術研討會發表之論文,國立高雄師範大學。
  90. 藍順德(1999)。從九年一貫課程的基本理念談教科書編審。教育研究資訊雙月刊,7(4),79-96。
  91. 藍順德(2006)。教科書政策與制度。台北: 五南圖書出版股份有限公司。
  92. 英文
  93. Benson, D. L., Wittrock, M. C., & Baur, M. E. (1993). Students' preconceptions of the nature of gases. Journal of research in science teaching, 30(6), 587-597.
  94. Bonwell, C. C., & Eison, J. A. (1991). Active Learning: Creating Excitement in the Classroom. Washington, DC: George Washington University.
  95. Brewer, W. F. (1987). Schemas versus mental models in human memory. In P. E. Morris (Ed.), Modeling Cognition ( pp. 187-197). New York: Wiley.
  96. Bucat, R. (1983). Elements of chemistry: Earth, air, fire and water. Canberra: Australian Academy of Science.
  97. Campbell, N. A., & Reece, J. B. (2002). Biology. San Francisco, CA: Benjamin Cummings.
  98. Catley, K., Lehrer, R., & Reiser, B. (2005). Tracing a proposed learning progression for developing understanding of evolution. Paper commissioned for the Committee on Test Design for K-12 Science Achievement. Center for Education, National Research Council.
  99. Chi, M. T. H. (1992), Conceptual change within and across ontological categories: Examples from learning and discovery in science, In R. Giere (Eds.), Cognitive models of Science: Minnesota Studies in the Philosophy of Science, 129-186, University of Minnesota Press: Minneapolis, MN.
  100. Chi, M. T. H. (2008). Three kinds of conceptual change: Belief revision, mental model transformation, and ontological shift. In S. Vosniadou (Ed.), International handbook of research on conceptual change ( pp. 61-82). New York: Routledge.
  101. Chi, M. T. H., & Roscoe, R. (2002). The processes and challenges of conceptual change. In M. Limón & L. Mason (Eds.), Reconsidering Conceptual Change: Issues in Theory and Practice ( pp. 3-27): Springer Netherlands.
  102. Chiu, M. H. (2008). Research and instruction-based/oriented work (rainbow) for conceptual change in science learning - an example of students’ understanding of gas particles. Paper presented at the NARST 2008, Baltimore, U.S.A.
  103. Chiu, M. H., & Chung, S. L. (2009). Investigating students’ontological change in their mental models of gas particles. Paper presented at the 2009 ESERA Conference, Istanbul, Turkey.
  104. Creswell, J. W. (2005). Educational research: Planning, conducting, and evaluating quantitative and qualitative research (2nd ed.). Upper Saddle River, NJ: Merrill/Prentice Hall.
  105. diSessa, A. (2006). A history of conceptual change research: Threads and fault lines. In R. K. Sawyer (Ed.), The Cambridge handbook of the learning sciences ( pp. 265-281). New York: Cambridge University Press.
  106. Dow, W. M., Auld, J., & Wilson, D. (1978). Pupils’ concepts of gases, liquids and solids. Dundee, UK: Northern College of Education, Dundee Campus.
  107. Gagné, E. D. (1985). The Cognitive Psychology of School Learning. Boston: Little, Brown and Company.
  108. Gentner, D., & Stevens, A. (1983). Mental Models. Hillsdale, NJ: Erlbaum.
  109. Harrison, A. G., & Treagust, D. F. (2002). The particular nature of matter : challenges in understanding the submicroscopic world. In J. K. Gilbert, O. D. Jong, R. Justi, D. F. Treagust & J. H. V. Driel (Eds.), Chemical education: Towards a research-based practice ( pp. 189-212). The Netherlands: Kluwer Academic Publishers.
  110. Heyworth, R. M. (1988). Mental representation of knowledge for a topic in high school chemistry. Michigan: Bell & Howell Company.
  111. Hull, D. L. (2001). Science and Selection One way to understand science is as a selection process. Cambridge, UK: Cambridge University Press.
  112. Kuhn, T. S. (1962). The Structure of Scientific Revolution. Chicago: The University of Chicago Press.
  113. Lakatos, I. (1970). Falsification and methodology of scientific research programmes. In I. Lakatos & A. Musgrave (Eds.), Criticism and the Growth of Knowledge ( pp. 91-196). Cambridge, UK: Cambridge University Press.
  114. Larson, E. J. (2006). Evolution:The Remarkable History of a Scientific Theory. New York: Random House Inc.
  115. Lee, O., Eichinger, D., Anderson, C., Berkheimer, C., & Blakeslee, T. (1993). Changing middle school students’ conceptions of matter and molecules. Journal of Research in Science Teaching, 30, 249-270.
  116. Leite, L. (2002). History of science in science education: Development and validation of a checklist for analysing the historical content of science textbooks. Science & Education, 11, 333-359.
  117. Lin, J. W., & Chiu, M. H. (2006). Students' conceptual evolution in electricity - The cladistical perspective. Paper presented at the NARST 2006, San Francisco, U.S.A.
  118. Martin, O., Mullis, I., Gonzales, E., & Chrostowski, S. (2004). Timss 2003 international science report. Boston College, MA: TIMSS and PIRLS International Study Centre.
  119. McSharry, G., & Jones, S. (2000). Role-play in science: teaching and learning. School Science Review, 82(298), 73-82.
  120. Mertler, C. A., & Charles, C. M. (2008). Introduction to educational research (6th ed.). Boston: Allyn & Bacon.
  121. Norman, D. A. (1983). Some observations on mental models. In D. G. A. L. Stevens (Ed.), Mental Models. New Jersey and London: Lawrence Erlbaum.
  122. Shennan, S., & Collard, M. (2005). Investigating processes of cultural evolution on the North Coast of New Guinea with multivariate and cladistic analyses. In R. Mace, C. J. Holden & S. Shennan (Eds.), The Evolution of Cultural Diversity: A Phylogenetic Approach ( pp. 133-164). London: :University College London Press.
  123. Tatar, E. (2011). Prospective primary school teachers’ misconceptions about states of matter. Educational Research and Reviews, 6(2), 1110-1113.
  124. Thagard, P. (1992). Conceptual revolutions. Princeton: Princeton University Press.
  125. Toulmin, S. (1972). Human understanding: The collective use and evolution of concepts. Princeton, New Jersey: Princeton University Press.
  126. Tsai, C. C. (1999). Overcoming junior high school students' misconceptions about microscopic views of phase change: A study of an analogy activity. Journal of Science Education and Technology, 8(1), 83-91.
  127. Tytler, R. (1998). Children's conceptions of science education. International Journal of Science Education, 20(8), 929-958.
  128. Wadsworth, B. J. (1971). Piaget's Theory of Cognitive Development: An Introduction for Students of Psychology and Education. New York: David McLay Company, INC.
  129. Watson, J. (1985). Drama and topic work: the school as a learning community. Two D Drama/Dance, 5(1), 66-81.
  130. Wiley, E. O., Siegel-Causey, D., Brooks, D. R., & Funk, V. A. (1991). The compleat cladist : a primer of phylogenetic procedures. Lawrence, Kansas 66045-2454, USA.
  131. Willams, M. D., Hollan, J. D., & Stevens, A. L. (1983). Human reasoning about a simple physical system. In D. Getner & A. L. Stevens (Eds.), Mental Models ( pp. 131-153). NJ: Lawrence Erlbaum Associates.
  132. Wu, W. L., & Chiu, M. H. (2011). Students' mental models of ideal gas and conceptual evolution based on evolutionary epistemology. Paper presented at the the European Science Education Research Association ( ESERA ) 2011, Lyon, France.
Times Cited
  1. 張淑玲(2017)。國民中小學卓越校長領導心智模式研究。清華大學教育與學習科技學系學位論文。2017。1-217。