Title

由概念改變探討科學史建模教學對學生熱傳播概念與建模能力之影響

Translated Titles

Effects of Science History Modeling Teaching on Students’ Concept of Heat Transfer and Modeling Ability via Concept Change

Authors

陳婉(女勻)

Key Words

概念改變 ; 模型 ; 科學史建模 ; 熱傳播 ; concept change ; model ; science history modeling ; heat transfer

PublicationName

臺灣師範大學科學教育研究所學位論文

Volume or Term/Year and Month of Publication

2012年

Academic Degree Category

碩士

Advisor

邱美虹

Content Language

繁體中文

Chinese Abstract

本研究選取教科書在『熱傳播』單元所呈現的概念為課程內容與教材設計的準則,以『傳統教學』、『建模教學』和『科學史建模教學』為教學方式,探討不同教學法對學生學習熱傳播概念成效的影響。再者,基於『建模能力分析指標』(張志康與邱美虹,2009),探討不同的教學方式對於學生建模能力的影響,更進一步探討不同的教學方式對學生建模能力和概念改變之間的交互作用關係的影響。最後,探討不同教學方式對學生科學模型本質的影響。 本研究對象為國小五年級學生共84位,所使用的研究工具包含熱傳播概念二階層診斷式紙筆測驗前測、後測和延宕測驗,熱傳播建模能力試卷前測、後測和延宕測驗以及科學模型本質測驗前測和後測。本研究的結果如下: 一、『科學史建模教學』和『建模教學』在整體教學成效和3週後科學概念保留的情形都明顯優於對照組。更進一步針對熱傳播各概念的學習成效分析,發現『科學史建模教學』只在延宕測的微觀向度明顯優於『建模教學』。 二、熱傳播的科學模型是由熱傳導科學模型、熱對流科學模型以及熱輻射科學模型所組成。熱傳導科學模型在範圍和成分兩個面向較易學習,其次是結構面向,接下來是巨觀行為面向;熱對流是在成分和巨觀行為兩個面向較易學習,其次是結構面向,接下來是範圍面向;熱輻射則是在巨觀行為面向較易學習,其次是成分面向,接下來是範圍面向,三個子概念中最難的都是微觀行為面向,學生不易改變迷思概念,概念回歸的情形也容易發生。 三、『科學史建模教學』和『建模教學』在熱傳播建模能力和3周後建模能力保留的情形都明顯優於對照組。更進一步針對各建模步驟的建模能力進行分析,發現在模型效化和模型應用中,『科學史建模組』明顯優於『建模教學』。 四、科學史建模組和建模組在後測以及延宕測的熱傳播概念和熱傳播建模能力都達顯著正相關,但對照組僅在後測有相關性。更進一步進行分析,發現唯有『模型建立』的建模能力在後測以及延宕測都與熱傳播概念有顯著相關。 五、『科學史建模教學』和『建模教學』對科學模型本質的表現都明顯優於對照組。更進一步針對科學模型本質的三面向進行分析,發現『科學史建模組』只有在科學模型方法論的『情境』主題中明顯優於『建模教學』。 綜上所述,建模教學可以幫助學生理解科學概念、建立科學模型,也可以提升建模能力和增進對科學模型本質的認識;若在建模教學中加入科學史的教材,更可幫助學生保留在概念的微觀行為向度了解、增進模型效化和模型應用的能力以及科學模型本質的方法論中『情境』主題的認識,本研究旨在探討國民小學實施建模教學及科學史建模教學之可行性,以供其他地區或學校未來在建構相關課程時之參考。

English Abstract

In the research, the concept of heat transfer in textbooks was adopted as a guideline for curriculum content and instructional design.To explore the effects of different instructional methods on students’ learning of the concept of heat transfer, control group, modeling teaching and science history modeling teaching were used.Moreover, according to Modeling Ability Analytic Index(Chang & Chiu, 2009), the author of the thesis examined the influences of different instructional methods on students’ modeling ability.Then, the author made a further exploration of the influence of the interactions between students’ modeling ability and concept change.In the end, the author delved into the impact of different instructional methods on students’ understanding of the nature of science models. The research subjects were 84 5th graders.The research tools included the pretest, posttest and retention test of two-tier multiple choice instrument of heat transfer and those of heat transfer modeling ability test and the pretest and posttest of nature of science model text. The objective of this thesis was to inquire into the feasibility of the use of modeling teaching and science history modeling teaching in elementary schools so as to serve as a reference for the future construction of correlated curricula in other areas or schools.The research results were as follows. 1. Science history modeling teaching and modeling teaching were obviously better than the control group in terms of the overall teaching effects and the science concept retention after three weeks.After the enquiry of the learning effect of each heat transfer concept, the author discovered that science history modeling teaching was better than modeling teaching in the micro behavior dimension of retention tests. 2. The science models of heat transfer were comprised of the ones of conduction, convection and radiation.The ideas in the domain and composition dimensions of the science model of conduction were the easiest to learn.Those in the structure dimension were the second easiest to learn.The ideas in the macro behavior dimension of the science model of conduction were the hardest to learn. In terms of the science model of convection, the ideas in the composition and macro behavior dimensions were the easiest to learn. Those in the structure dimension were the second easiest to learn. The hardest to learn was those in the domain dimension.As for the science model of radiation, the easiest to learn was those in the macro behavior dimension; the second easiest, the composition dimension; the hardest, the domain dimension.Of the three sub-concepts, the hardest one to understand was the ideas about the micro behavior dimension, in which it was hard for the students to change their false beliefs and the phenomenon of conceptual regression was common is this dimension. 3. Science history modeling teaching and modeling teaching were clearly better than the control group in terms of the heat transfer modeling ability and the modeling ability retention after three weeks.After the inquiry of the modeling ability of each modeling process, the author discovered that science history modeling was far better than modeling teaching in the model validation and model application. 4. There was a significant and positive correlation between the concepts of heat transfer and heat transfer modeling ability in the posttests and retention tests of the science history modeling teaching and modeling teaching.However, in the control group, only in posttests was there a significant and positive correlation between the concepts of heat transfer and heat transfer modeling ability.After making a further study, the author found that there was a significant and positive correlation between the modeling ability of model construction and the concept of heat transfer in posttests and retention tests. 5. In terms of the effects of the nature of science models, the science history modeling teaching and modeling teaching were considerably better than the control group. After a further examination of the three dimensions of the nature of science models, the author discovered that the science history modeling was only significantly better than modeling teaching in the topic of context in science model epistemology. According the abovementioned findings, modeling teaching helps students comprehend science concepts, construct science models, improve modeling ability and better understand the nature of science models.If the materials of science history can be added to modeling teaching, students will better comprehend the concepts in micro behavior dimension, increase the abilities of model validation and model application and understand the topic of context in science model epistemology.

Topic Category 理學院 > 科學教育研究所
社會科學 > 教育學
Reference
  1. 吳明珠(2008)。科學模型本質剖析:認識論面向初探。科學教育月刊,307,2-8。
    連結:
  2. 邱美虹(2000)。概念改變的省思與啟示,科學教育學刊, 8 (1) , 1-34。
    連結:
  3. 邱美虹(2008)。模型與建模能力之理論架構。科學教育月刊, 306, 2-9。
    連結:
  4. 邱美虹與林靜雯(2002)。以多重類比探究兒童電流心智模式之改變。科學教育學刊, 10(2), 109-134。
    連結:
  5. 邱美虹與劉俊庚(2008)。從科學學習的觀點探討模型與建模能力。科學教育月刊,314,2-20。
    連結:
  6. 周金城(2008)。探究中學生對科學模型的分類與組成本質的理解。科學教育月刊,306,10-18。
    連結:
  7. 林靜雯與邱美虹(2008)。從認知/方法論之向度初探高中學生模型及建模歷程之知識。科學教育月刊,307,9-14。
    連結:
  8. 張志康(2009)。從概念改變理論探究建模教學對學生力學心智模式與建模能力之影響。國立台灣師範大學科學教育研究所博士論文(未出版)。
    連結:
  9. 張志康與邱美虹(2009)。建模能力分析指標的發展與應用—以電化學為例。科學教育學刊,17,4,319-342。
    連結:
  10. 陳瑞麟(2004)。科學理論版本的結構與發展。台北市:臺灣大學出版。
    連結:
  11. 陳瑞麟(2005)。科學現象的觀察與建構。東吳哲學學報,11,57-98。
    連結:
  12. American Association for the Advancementof Science (AAAS). (1993). Benchmarks for Science Literacy. ERIC Document Reproduction Service No.ED399180.
    連結:
  13. Biggs, J. B., & Collis, K. F. (1982). Evaluating the Quality of Learning: the SOLO taxonomy. New York: Academic Press.
    連結:
  14. Chi, M. T. H. (1992). Conceptual change within and across ontological categories: Implications for learning and discovery in sciences. In R. Giere (Ed.), Cognitive models of science: Minnesota studies in the philosophy of science (pp.129-186). Minneapolis: University of Minnesota Press.
    連結:
  15. Chi, M. T. H., Slotta, J. D., & deLeeuw, N. (1994). From things to processes: A theory of conceptual change for learning science concepts, Learning and instruction, 4, 27-43.
    連結:
  16. Chi, M.T.H. (2005). Common sense conceptions of emergent processes: Why some misconceptions are robust. Journal of the Learning Sciences, 14: 161-199.
    連結:
  17. Chiou, G., & Anderson, O. R.(2009). A Study of Undergraduate Physics Students’ Understanding of Heat Conduction Based on Mental Model Theory and an
    連結:
  18. Clough, E. E., & Driver, R. (1985). Secondary students’ conceptions of the conduction of heat: Bringing together scientific and personal views. Physics Education, 20(4), 176 – 182.
    連結:
  19. Cohen, R.S.(1994). “Individuality and common purpose: the philosophy of science.” Science & Education , 3, 393-407.
    連結:
  20. diSessa, A. A. (1993). Towards an epistemology of physics. Cognition and instruction, 10(2 & 3), 105-225.
    連結:
  21. diSessa, A. A. (2008). A Bird’s-Eye View of the “Pieces” VS. “Coherence” Controversy (Erom the “pieces” Side of the Fence). In Vosniadou, S., International handbook of research on conceptual change (pp.35-60). New York: Routledge.
    連結:
  22. diSessa, A. A. and Sherin, B. L.(1998). What changes in conceptual change?. International Journal of Science Education, 20: 10, 1155 — 1191.
    連結:
  23. Duschl, R. A.(1990). Restructuring science education: The importance of theories and their development. New York: Teacher College Press.
    連結:
  24. Erickson, G. L. (1979). Children’s conceptions of heat and temperature. Science Education, 63(2), 221 – 230.
    連結:
  25. Erickson, G. L. (1980). Children’s viewpoints of heat: A second look. Science Education, 64(3), 323 – 336.
    連結:
  26. Gilbert, J. (1993). The role of models and modeling in science education. Paper presented at the 1993 Annual Conference of the National Association for Research in Science Teaching, Atlanta, GA, USA.
    連結:
  27. Gilbert, J. K. (1993). Models and modeling in science education (Hatfield: The Association for Science Education).
    連結:
  28. Gilbert, J. K., & Boulter, C. (Eds.) (2000). Developing Models in Science Education. Kluwer Academic Publishers, Dordrent , The Netherland.
    連結:
  29. Gilbert, S. W. (1991). Model building and definition of science. Journal of Research in Science Teaching, 28, 73-79.
    連結:
  30. Grosslight, L., Unger, C., Jay, E., & Smith, C. (1991). Understanding models and their use in science conceptions of middle and high school students and experts. Journal of Research in Science Teaching, 28(9), 799-822.
    連結:
  31. Halloun, I. (1996). Schematic Modeling for Meaningful Learning of Physics. Journal of Research in Science Teaching, 33, 9, 1019-1041.
    連結:
  32. Halloun, I. (2006). Modeling Theory in Science Education. Netherlands: Springer.
    連結:
  33. Hewson, P.W. (1981). A conceptual change approach to learning science. European Journal of Science Education, 3 , 383-396.
    連結:
  34. Hodson, D. (1992) In search of a meaningful relationship: an exploration of some issues relating to integration in science and science education. International Journal of Science Education, 14, 541–562.
    連結:
  35. Jones, M. G., Carter, G., & Rua, M. J.(2000). Exploring the Development of Conceptual Ecologies: Communities of Concepts Related to Convection and Heat. JOURNAL OF RESEARCH IN SCIENCE TEACHING. VOL. 37, NO. 2, PP. 139–159.
    連結:
  36. Justi, R. S. (2000). Teaching with Historical Models. In J. K. Gilbert & C. J. Boulter (Eds.), Developing Models in Science Education (pp.209-226.). Dordrecht, The Netherlands: Kluwer Academic Publishers.
    連結:
  37. Justi, R. S., & Gilbert, J. K. (2002). Modelling, teachers’ views on the nature of modeling, and implications for the education of modelers. International Journal of Science Education, 24(4), 369-387.
    連結:
  38. Lewis, E. L.,&Linn,M. C. (1994).Heat and temperature concepts of adolescents, adults, and experts: Implications for curriculum improvements. Journal of Research in Science Teaching, 31(6), 657 – 677.
    連結:
  39. Matthews, M. R. (1994). Science Teaching: The Role of History and Philosophy of Science. New York: Routledge.
    連結:
  40. Matthews, M. Science Teaching. (1994). The Role of the History and Philosophy of science. New York: Routledge,
    連結:
  41. Monk, M. & Osborne, J.(1997). “Placing the History and Philosophy of Science on the Curriculum: A Model for the Development of Pedagogy.” Science Education , 81, 405-424.
    連結:
  42. National Research Council. (1996). National Science Education Standards. Washington, DC: National Academy Press.
    連結:
  43. Nersessian, N. (1992a). How do scientists think? Capturing the dynamics of conceptual change in science. In R. Giere (Ed.), Cognitive models of science Minnesota studies in the philosophy of science, Vol. 15. Minneapolis: University of Minnesota Press.
    連結:
  44. Nersessian, N. (1993). In the theoretician’s laboratory: thoughtful experimenting as mental modeling. In D. Hull, M. Forbes, & K. Okruhlik (Eds.), PSA 1992, 2 (pp.291-301). East Lansing, MI: Philosophy of Science Association.
    連結:
  45. Nersessian, N. (1995). Should physicists preach what they practice? Science and Education, 4, 203-226.
    連結:
  46. Padilla, K., & Furio-Mas, C. (2008). The importance of history and philosophy of science in correcting distorted views of “amount of substance” and “model” concepts in chemistry teaching. Science & Education, 17(4), 403-424.
    連結:
  47. Reiner, M., Slotta, J. D., Chi, M. T. H., & Resnick, L. B. (2000). Naive physics reasoning: A commitment to substance-based conceptions. Cognition and Instruction, 18(1), 1 – 34.
    連結:
  48. Sequeira, M., & Leite, L. (1991). Alternative conceptions and history of science in physics teacher education. Science Education, 75(1), 45-56.
    連結:
  49. Sins, P. H. M., Savelsbergh, E. R., & van Joolingen, W. R. (2005). The difficult process of scientific modeling: an analysis of novices’ reasoning during computer-based modeling. International Journal of Science Education, 14(18), 1695-1721.
    連結:
  50. Thagard, P. (2008). Conceptual change in the history of science: Life, mind, and disease. In S. Vosniadou (Ed.),
    連結:
  51. Treagust, D. F., Chittleborough, G., & Mamiala, T. L. (2002). Students’ understanding of the role of science models in learning science. International Journal of Science Education, 24(4), 357-368.
    連結:
  52. Vosniadou, S.(1994). Capturing and modeling the process of conceptual change. Learning and Instruction, Vol. 4, pp. 45-69.
    連結:
  53. Vosniadou, S., & Ioannides, C. (1998). From Conceptual Development to Science Education: A Psychological Point of View. International Journal of Science Education, 20(10), 1213-1230.
    連結:
  54. Wandersee, J. H.,& Linda, L. M. (1998). Interactive Historical Vignettes. In Mintzes, J. J., Wandersee, J. H.,& Novak, J. D (Eds.), Teaching Science for Understanding A Human Constructivist View (pp.). San Diego, CA : Academic Press.
    連結:
  55. Wiser, M., & Amin, T. (2001). “Is heat hot?” Inducing conceptual change by integrating everyday and scientific perspectives on thermal phenomena. Learning and Instruction, 11(4), 331 – 355.
    連結:
  56. 參考文獻
  57. 一、中文部分
  58. 王文科(主譯)(1989)。學習心理學—學習理論導論(原作者:B.R.Hergenhahn)。台北市:五南。(原著出版年:1976)
  59. 田靜如(譯) (2005) 。溫度,決定一切(原作者:Gino Segrè) 。台北市:天下遠見。 (原著出版年:2002)
  60. 邱美虹(2007)。化學教育中建模模式的研發與實踐--子計畫四:以認知師徒制探討建模能力與歷程對學生學習物質科學中「氧化與 還原」之影響研究成果報告。國立臺灣師範大學科學教育研究所。行政院國家科學委員會專題研究計畫成果報告。(NSC 95-2511-S-003-025-MY2)。
  61. 洪振方(1997)。科學史融入科學教學之探討。高雄師大學報,8期, 233-246。
  62. 徐光台(1999)。建構主義與科學教育進步。歐美研究,29,4,153-183。
  63. 許良榮與李田英(1995)。科學史在科學教學的角色與功能。科學教育月刊,179期, 15-27。
  64. 郭重吉與吳武雄(1990)。利用晤談方式探查國中學生對重要物理概念的另有架構之研究(I)》。國立彰化師範大學科學教育研究所。行政院國家科學委員會專題研究計畫成果報告。(NSC78-0111-s-018-04D)。
  65. 程樹德、傅大為、王道還、錢永祥(譯)(1989)。科學革命的結構(原作者:Thomas Kuhn)。台北市:遠流。(原著出版年:1962)
  66. 賴紹榮與周更生 (2004)。熱力學的發展簡史。科學發展,377,6-15。
  67. 二、英文部分
  68. American Association for the Advencement of Science. (1990). Science for All Americans. Project 2061. New York: Oxford University Press.
  69. American Association for the Advencement of Science. (1993). Benchmarks for Science Literacy. Project 2061. New York: Oxford University Press.
  70. Boulter, C. J. & Buckley, B. C. (2000). Constructing a Typology of Models for Science Education. In J. K. Gilbert & C. J. Boulter (Eds.), Developing Models in Science Education (pp.41-58.). Dordrecht, The Netherlands: Kluwer Academic Publishers.
  71. Buckley. B. B.(2004). Interactive media and model-based learning. In J. Gilbert., The RoutledgeFalmer Reader in Science Education (pp. 110-145). New York: RoutledgeFalmer.
  72. Chi, M. T. H. & Roscoe, R. D. (2002). The processes and challenges of conceptual change. In M. Limon and L. Mason (Eds.), Reconsidering Conceptual Change: Issues in Theory and Practice. Kluwer Academic Publishers, The Netherlands, pp 3-27.
  73. Chi, M.T.H., & Hausmann, R. G. M. (2003). Do radical discoveries require ontological shifts? In L. Shavinina & R. Sternberg (Eds.) International Handbook on Innovation (Vol. 3, pp. 430–444). New York: Elsevier Science.
  74. Chi, M.T.H. (2008). Three types of conceptual change: Belief revision, mental model transformation, and categorical shift. In S. Vosniadou (Ed.), Handbook of research on conceptual change(pp. 61-82).Hillsdale, NJ: Erlbaum.
  75. Chiu, M. H. (2007). Research And InstructioN-Based/Oriented Work (RAINBOW) for Conceptual Change in Science Learning. Paper present at the NICE 2007, July 30-31, Taipei, TAIWAN
  76. Clement, J. (1989) Learning via model construction and criticism. In J. A. Glover, R. R. Ronning and C. R. Reynolds (eds), Handbook of Creativity (New York: Plenum), 341–381.
  77. Hestenes, D. (1993). MODELING is the name of the game. Retrieved From http://scholar.google.com.tw/scholar?q=MODELING+is+the+name+of+the+game&hl=zh-TW&btnG=%E6%90%9C%E5%B0%8B&lr=
  78. Duit, R., & Glynn, S. (1996). Mental modeling. In G. Welford, J. Osborne, & P. Scott (Eds.), Research in science education in Europe (pp. 166-176). London: Falmer Press.
  79. Erickson, G., & Tiberghien, A. (1985). Heat and temperature.
  80. Hestenes, D. (1993). Modeling is the name of the game. Retrieved From http://scholar.google.com.tw/scholar?q=MODELING+is+the+name+of+the+game&hl=zh-TW&btnG=%E6%90%9C%E5%B0%8B&lr=
  81. Hestenes, D. (1995). Modeling software for learning and doing physics. In Bernardini, C., Tarsitani, C., & Vincentini, M. (Eds.). Thinking physics for teaching. (pp.25-66.) New York: Plenum.
  82. Hodson, D. (2008). Towards scientific literacy: A teachers’ guide to the history, philosophy and sociology of science. Rotterdam: Sense.In R. Driver, E. Guesne, & A. Tiberghien (Eds.), Children’s ideas in science (pp. 52 – 84). Philadelphia: Open University Press.
  83. Jenkins, E.(1989).Why the history of science﹖In M. Shortland & A. Warwick(eds.), Teaching the history of science(p.19-29). Basil Blackwell: The British Society for the History of Science.
  84. Jones, R.(1989). The historiography of science: retrospect and future challenge. In M. Shortland & A. Warwick(eds.), Teaching the history of science(p.80-99).Basil Blackwell: The British Society for the History of Science.
  85. National Science Teachers Association. (1995). Scope, Sequence, and Coordination of Secondary School Science. Volume 3. A Higi School Framework for National Science Education Standards. Washington, DC: NSTA.
  86. Oldroyd, D. R.(1977). Teaching the history of chemistry in New South Wales secondary schools. The Australian Science Teachers Journal, 23(2),9-22.Ontology–Process Analysis. Science Education.
  87. Thagard, P. (1992). Conceptual revolutions. Princeton, NJ: Princeton University Press.
  88. Thagard, P. (1999). How scientists explain disease. Princeton, NJ: Princeton University Press.
  89. Vosniadou, S., Vamvakoussi, X., & Skopeliti, I. (2008). The Framework Theory Approach to the Problem of Conceptual Change. In Vosniadou, S., International handbook of research on conceptual change (pp.3-34). New York: Routledge.
  90. Wiser, M. (1988). Can models foster conceptual change? The case of heat and temperature. Cambridge:Harvard Graduate School of Education (ETC Technical Report TR88-7).