Title

探討七年級學生人體體溫恆定性心智模式與其一致性之關係

Translated Titles

Investigate the relation between seventh grade students' mental models regarding the homeostasis of human body temperature and their consistency

Authors

白勝安

Key Words

人體體溫恆定性 ; 心智模式 ; 概念改變 ; 一致性 ; the homeostasis of human body temperature ; mental model ; conceptual change ; consistency

PublicationName

臺灣師範大學科學教育研究所學位論文

Volume or Term/Year and Month of Publication

2012年

Academic Degree Category

碩士

Advisor

邱美虹

Content Language

繁體中文

Chinese Abstract

我國100學年度實施的97年國民中小學課程綱要中,將人體恆定性列為必須學習的能力指標之一。美國科學促進學會在Project 2061科學素養的基準中,指出國中人體生理學教學不應僅側重在生理結構和功能介紹,更應強調生命維持的基本需求,包括各個層次生理結構的互動以維持穩定的體內環境。 本研究以二階層診斷問卷、半結構式訪談和教學錄影施測和記錄,探討56名七年級學生人體體溫恆定性心智模式類型與其一致性關係表現,以及心智模式與其一致性兩者受到教學影響的前後如何發生轉變。利用九個命題陳述和五個問題情境設計問卷試題,訪談問題則包括「體溫的改變」、「體溫改變時的反應」和「體溫來源」三類。 研究結果如下: 1、從教學前後的施測結果顯示,學生回答巨觀問題時答對率皆能超過65%,然而對於微觀的題目即使在教學後仍然低於40%,因此無法將顫抖與呼吸作用連結。 2、學生在教學後,不論巨觀或微觀答題表現皆有顯著進步。在延宕測驗中,在巨觀答題的退步未達顯著,但在微觀答題退步達顯著。 3、七年級學生的人體體溫恆定性心智模式類型有科學模式、運動模式、外因模式、不調節模式和混合模式。 4、學生在「體溫來源」、「血液循環與體溫」、「運動、食慾與體溫」和「運動、血液循環與體溫」四個命題陳述中,心智模式一致性較低。前測和後測時在「氣候溫暖」的一致性較低,到了延宕測驗才具有較高的一致性。在「寒冷時運動」的情境中,學生在三次測驗的一致性都偏低。 5、個案教師教學時較少連結生活經驗與微觀機制且未說明「氣候溫暖」和「寒冷時運動」時產熱方式和散熱方式的變化,使學生產生另有概念和降低答題一致性。 研究結果顯示學生較熟悉可觀察到的巨觀現象,而不瞭解微觀機制,且在某些情境答題一致性偏低。教學應強化巨觀和微觀的連結,並涵蓋更多情境。未來研究中可以跨年級研究並結合人體體溫恆定相關「結構」和「功能」以獲得更多心智模式類型。

English Abstract

Human physiology is one of the core competences in the 2008 curriculum guidelines for elementary and junior high school education which were implemented in the school year 2011. At the benchmark for science literacy of Project 2061, the American Association for the Advancement of Science points out that rather than only focusing on teaching physiological structure and its function, instruction should more emphasize on the essential requirements for life, including the interactions among all levels of the physiological structure in order to maintain the stable condition inside the body. There are 56 seventh grade students were involved. The data were collected from two-tier diagnostic instrument, semi-structure interview, and instruction. The goals were to investigate the relation between seventh grade students’ mental models regarding the homeostasis of human body temperature and their consistency, and how they were changed after instruction. The questionnaire was designed by using nine propositions and five scenario questions, and the interview questions including the change of the body temperature, the reaction to the change of the body temperature, and the source of the body temperature. The results of the study were as follows. First, over 65 % of the macroscopic related questions were answered correctly while under 40 % of the microscopic related questions even after instruction. The students still could hardly link the concept of tremble and respiration. Second, regardless of the performance on the macroscopic questions or the microscopic questions, the students got improved significantly after instruction. At the delay-test, the students Third, the types of seventh grade students’ mental models regarding the homeostasis of human body temperature were scientific model, exercise model, external factor model, none-adjustment model, and mixed model. Forth, the students performed worse on the mental models’ consistency at the questions regarding “the source of the body temperature”, “bloody circulation and body temperature”, and “exercise, appetite, and body temperature” than the questions regarding other propositions. They answered the questions regarding the situation of the warm weather less consistently at the pre-test and post-test than the questions regarding other situations, but got better consistent at the retention-test. When answering the questions regarding the situation of the exercise in cold weather, the students had low consistency at the three tests. Fifth, the teacher seldom connected the life experience and the microscopic mechanism. Besides, she did not explain how the heat production and the heat exchange varied at the situations of “the warm weather” and “the exercise in the cold weather”. Consequently, the students produced the alternative conceptions and answered low consistently. The results indicated that the students were familiar with the macroscopic and observable phenomenon, but they did not understand the microscopic mechanism, and answered them less consistently at some situations. The instruction should strengthen the connection between the macroscopic and the microscopic representations, and covered more contexts. Further research in this field might consider to conduct for cross-age subjects and integrate the concepts of the the homeostasis of human body temperature related structure and its functions to obtain more mental model types regarding the homeostasis of human body temperature.

Topic Category 理學院 > 科學教育研究所
社會科學 > 教育學
Reference
  1. 林素華、劉燿誠(2010)。國中學生「恆定性」的另有概念之探討。科學教育學刊,18(1),25-41。
    連結:
  2. 林陳涌和徐毓慧(2002)。國一學生對血糖恆定性的先前概念。科學教育學刊,10(4),378-387。
    連結:
  3. 邱美虹(2000)。概念改變研究的省思與啟示。科學教育學刊,8(1),1-34。
    連結:
  4. 邱美虹、劉俊庚(2008)。從科學學習的觀點探討模型與建模能力。科學教育月刊,314,2-20。
    連結:
  5. 張志康、林靜雯和邱美虹(2009)。跨年級中學生電路心智模式研究。科學教育研究與發展季刊,53,24-42。
    連結:
  6. 黃佳杏(2007)。從突現過程本體面向探討生物恆定性概念改變—以七年級學生為例。國立臺灣師範大學科學教育研究所教學碩士班碩士論文(未出版)。
    連結:
  7. 鍾曉蘭(2007)。以多重表徵的模型教學探究高二學生理想氣體心智模式的類型及演變的途徑。國立臺灣師範大學科學教育研究所教學碩士班碩士論文(未出版)。
    連結:
  8. American Association for the Advancement of Science (1993). Benchmarks for Science Literacy. Retrieved from http://www.project2061.org/
    連結:
  9. Barak, F., Sheva, B. & Gorodetsky, M. (1999). As ‘process’ as it can get: students’ understanding of biological process. International Journal of Science Education, 21(12), 1281-1292.
    連結:
  10. Barrass, R. (1984). Some misconceptions and misunderstandings perpetuated by teachers and textbooks of biology. Journal of Biological Education, 18(3), 201-206.
    連結:
  11. Chinn, C. A. & Brewer, W. F. (1998). An empirical test of a taxonomy of responses to anomalous data in science. Journal of research in science teaching, 35(6), 623-654.
    連結:
  12. Chang, S. N. (2007). Externalising students’ mental models through concept maps.Education Research, 41, 107-112.
    連結:
  13. Chi, M. T. H., de Leeuw, N., Chiu, M. H., & LaVancher, C. (1994). Eliciting self-explanations improves understanding. Cognitive Science, 18, 439-477.
    連結:
  14. diSessa, A. A., (2008). A bird’s-eye view of the “pieces” vs. “coherence” controversy (from the “pieces” side of the fence). In S. Vosniadou (Ed.), International handbook of research on conceptual change (pp. 35–60). New York: Routledge. Wandersee, J.H., Mintzes, J.
    連結:
  15. Finley, F. N., Stewart, J., & Yarroch, W. L. (1982). Teachers’ perceptions of important and difficult science content. Science Education, 66(4). 531-538.
    連結:
  16. Gómez Crespo, M. A., & Pozo,J.I.(2005).The Embodied Nature of Implicit Theories: The Consistency of Ideas About the Nature of Matter. Cognition and Instruction, 23(3), 351-387.
    連結:
  17. Harrison, A. G. & Treagust, D. F. (1996). Secondary students’ mental models of atoms and molecules: implications for teaching chemistry. Science Education, 80(5), 509-534.
    連結:
  18. Lopresti, V. C.& Lizotte, D. M. (1988). Teaching dynamic homeostasis: A laboratory exercise in cardiac dynamic utilizing biofeedback software. Journal of Biological Education, 22(4), 304-306.
    連結:
  19. Posner, G. J., Strike, K. A., Hewson, P. W., & Gertzog. W. A. (1982). Accommodation of a scientific conception: toward a theory of conceptual change. Science Education, 66(2), 211-227.
    連結:
  20. Simpson, W. D., & Marek, E. A. (1988). Understandings and misconceptions of biology conceptions held by students attending small high schools and students attending large high schools. Journal of Research in Science Teaching, 25(5), 361-374.
    連結:
  21. Slotta, J. D. & Chi, M. T. H. (2006). The impact of ontology training on conceptual change: Helping students understand the challenging topics in science. Cognition and Instruction.
    連結:
  22. Treagust, D. F. (1988). Development and use of diagnostic test to evaluate student’s misconceptions in science. International Journal of Science Education,10(2), 159-169.
    連結:
  23. Vosniadou, S. (1994). Capturing and modeling the process of conceptual change. Learning and Instruction, 4(1), 45-69.
    連結:
  24. Vosniadou, S., & Brewer, W. F. (1992). Mental models of the earth: A study of conceptual change in childhood. Cognitive Psychology, 24(4), 535-585.
    連結:
  25. Vosniadou, S., & Brewer, W. F. (1994). Mental models of the day / night cycle. Cognitive Psychology,18(1), 123-183.
    連結:
  26. Westbrook, S. L., & Marek, E. A. (1992). A cross age study of student understanding of the concept of homeostasis. Journal of Research in Science Teaching, 29(1), 51-61.
    連結:
  27. 一、中文部份
  28. 吳國盛(1998)。科學的歷程。新竹市:理藝。
  29. 林英智(2009)。國民中學自然與生活科技課本第一冊。台北市:翰林。
  30. 郭重吉(2009)。國民中學自然與生活科技課本第一冊。台北市:南一。
  31. 陳世煌(2009)。國民中學自然與生活科技課本第一冊。台北市:翰林。
  32. 傅雪惠(2002)。國小學童溫度相關概念學習路徑之研究。國立新竹教育大學課程與教學研究所碩士論文(未出版)。
  33. 潘震澤、楊志剛、高毓儒、高娟娟、袁宗凡、謝坤叡(譯) (2006)。Eric P. Widmaier, Hershel Raff, Kelvin T. Strang, & Eric Widmaier著。人體生理學。臺北市:合記。
  34. 鍾楊聰、夜開溫、崔文慧、徐歷鵬(譯)(2005)。Neil A. Campbell & Jane B. Reece著。生物學。臺北市:偉明。
  35. 蘇采禾(譯)(2007)。科學簡史—250個影響人類的重大發現(原作者:Peter Tallack)。臺北市:時報文化。
  36. 二、英文部份
  37. Chang, S. N. & Chiu, M. H. (2004). Probing students’ conceptions concerning homeostasis of blood sugar via concept mapping. Proceeding of the Annual Meeting of the National Association for Research in Science Teaching, April 01-04, Vancouver/Canada.
  38. Chi, M. T. H. (2008). Three types of conceptual change: belief revision, mental model transformation, and categorical shift. In S. Vosniadou (Ed.), International handbook of research on conceptual change (pp. 61–81). New York: Routledge. Wandersee, J.H., Mintzes, J.
  39. Chi, M. T. H. & Roscoe, R. D. (2002). The processes and challenges of conceptual change. In M. Limon and L. Mason (Eds), Reframing the process of conceptual change: Integrating theory and practice. (pp. 3-27). Dordrecht, The Netherlands: Kluwer.
  40. Collins, A. & Gentner, D. (1987). How people construct mental models. In D. Holland and N. Quinn (Eds.), Cultural Models in Thought and Language. Cambridge UK: Cambridge University Press, 243-265.
  41. Gilbert, J. K., Boulter, C. J., & Elmer, R. (2000).Positioning models in science education and in design and technology education. In J. K. Gilbert & C. J. Boulter (Eds.), Developing Models in Science Education (pp. 3-17). Dordrecht, The Netherlands: Kluwer Academic Publisher.
  42. Jonassen, D. (2008). Model building for conceptual change. In S. Vosniadou (Ed.), International handbook of research on conceptual change (pp. 676–693). New York: Routledge. Wandersee, J.H., Mintzes, J
  43. Treagust, D. F. (1995). Diagnostic assessment of student’s science knowledge. In S. M. Glynn & R. Duit (Eds.), Learning science in the schools: Research reforming practice. (pp. 327-346). Mahwah, NJ: Erlbaum.
  44. Vosniadou, S., Vamvakoussi, X., & Skopeliti, I. (2008). The framework theory approach to the problem of conceptual change. In S. Vosniadou (Ed.), International handbook of research on conceptual change (pp. 3–34). New York: Routledge. Wandersee, J.H., Mintzes, J.
  45. Wiser, M. & Smith, C. L., (2008). Learning and teaching about matter in grades K-8: when should the atomic-molecular theory be introduced? In S. Vosniadou (Ed.), International handbook of research on conceptual change (pp. 205–239). New York: Routledge. Wandersee, J.H., Mintzes, J.