透過您的圖書館登入
IP:3.94.102.228
  • 學位論文

含硫三鐵錯合物 [SFe3(CO)9]2- 的化性研究與新系列 15 族-鉻錯合物的合成開發與相關反應探討

指導教授 : 謝明惠
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


中文摘要 1. S/Fe/CO 系統 Na2SO3 與 Fe(CO)5 在鹼性甲醇溶液中加熱反應產生四面體結構化合物 [Et4N]2[SFe3(CO)9] (1)。利用 4 M 鹽酸與 1 進行酸化反應得到質子化產物 [Et4N][SFe3(m-H)(CO)9] 與 [SFe3(m-H)2(CO)9]。進一步將 1 與 CF3SO3CH3 反應則得到甲基化產物 [Et4N][MeSFe3(CO)9] (2),其中甲基鍵結於 S 原子上。若將 1 與另一有機鹵化物 BrCH2C(O)OCH3 反應則得到 [Et4N][SFe3(CO)8(m-CO)(CH2C(O)OCH3)] (3),其中有機配子 CH2C(O)OCH3 接在 Fe 原子上。此外,具八面體結構之化合物 [Et4N]2[SFe2Ru3(CO)14] (4) 可由 1 與 Ru3(CO)12 在丙酮中加熱反應產生。若進一步將 4 與 CF3SO3CH3 反應則可得同樣具八面體結構之化合物 [Et4N][MeSFe2Ru3(CO)14] (5),其中 S 原子具少見的五配位鍵結模式。 化合物 1 與溴丙炔以莫耳數比 1:2 於氰甲烷反應,可分離出三種產物,分別是中性化合物 (m3-S)Fe3(CO)9(m3-h1:h2:h1-C(H)=C(CH3)) (6)、SFe2(CO)6(m2-h1:h2-CH=C(CH3)C(O)) (7) 及主要陰離子性產物[Et4N][(m2-S)Fe3(CO)9(m2-h1:h3-C(O)C(H)=C=CH2)] (8)。進一步將主產物 8 與 [Cu(CH3CN)4][BF4] 於二氯甲烷中反應,可分離出化合物 6 和 SFe2(CO)6(m2-h1:h2-C(O)CH=C(CH3)) (9)。若將 8 與 CF3SO3CH3 反應,則可得甲基化產物 (m2-S)Fe3(CO)9(m3-h2:h2:h1-C(OCH3)- C(H)=CCH2) (10)。 2. Bi/Fe/CO 系統 將已知的混合 Zintl 與過渡金屬的化合物 [Et4N]2[Bi4Fe4(CO)13] 與 Fe(CO)4(NCCH3) 以莫耳數比 1:1 於氰甲烷反應,可得到預期的核擴大產物 [Et4N]2[Bi4Fe5(CO)17]。然而若將 [Et4N]2[Bi4Fe4(CO)13] 與 [Mn(CO)5(CH3CN)][PF6] 反應則沒有得到預期的產物 [Et4N][Bi4Fe4Mn(CO)18],而是得到混合過渡金屬團簇化合物 [Et4N][Bi4Fe3Mn(CO)14] (11)。 3. E/Cr/CO (E = As,Sb,Bi) 系統 將 E2O3 (E = As、Sb) 與 Cr(CO)6 在高濃度的鹼性甲醇中反應,可得到具角錐結構之化合物 [Et4N]2[HE{Cr(CO)5}3] (E = As,13a;Sb,13b),此為第一種含有 E-H 鍵 (E = As,Sb) 的第六族羰基化合物。在 As 系統中,我們還可分離出另一含兩個 As-H 鍵的產物[Et4N][H2As{Cr(CO)5}2] (12)。若將 13a 與 RBr (R = PhCH2,HCoCCH2) 於 THF 中反應,則產生加成產物 [Et4N][(R)(Br)As{Cr(CO)5}2] (R = PhCH2,14;CH3CoC,15) 和 [BrCr(CO)5]-。然而 13b 與有機鹵化物 RX (R = PhCH2,X = Br;R = CH3(CH2)5C(O),X = Cl) 反應,則得到鹵化產物 [XSb{Cr(CO)5}3]2- (X = Br,Cl)。混合雙鹵化錯合物 [Bu4N][BrISb{Cr(CO)5}2] (17) 可由 [Bu4N]2[BrSb{Cr(CO)5}3] 與 CH2I2 反應產生。但若將 [Et4N]2[BrSb{Cr(CO)5}3] 與 CH3C(O)Cl 反應,則產生 [Et4N][Cl2Sb- {Cr(CO)5}2] (16),而非預期的 [Et4N][BrClSb{Cr(CO)5}2]。 在低於室溫時 (<20℃),Na2BiO3 與 Cr(CO)6 在高濃度的鹼性甲醇中反應,可得一深棕色的產物 [Et4N]3[Bi{Cr(CO)5}4] (18)。若將反應溫度提高 (>30℃),則可分離出一紫紅色產物 [Et4N]2[MeBi{Cr(CO)5}3] (19),產物中甲基應是來自於甲醇。若將化合物 18 與 RI (R = Me, Et) 反應,可得烷基化產物 [Et4N]2[RBi{Cr(CO)5}3]。然而若將化合物 18 在二氯甲烷中攪拌,則會形成氯化產物 [Et4N]2[ClBi{Cr(CO)5}3] (20)。而[Et4N]2[MeBi{Cr(CO)5}3] 若進一步與 MeI 反應,則得到雙甲基化產物 [Et4N][Me2Bi{Cr(CO)5}2] (21)。

並列摘要


Abstract 1. S/Fe/CO System The reaction of Na2SO3 with Fe(CO)5/KOH in methanol forms the tetrahedral cluster [Et4N]2[SFe3(CO)9] (1) in good yield. Acidification of 1 with H+ forms the monohydrido cluster [Et4N][SFe3(m-H)(CO)9] and the dihydrido cluster SFe3(m-H)2(CO)9. Further methylation of 1 with CF3SO3CH3 produces the sulfur-methylated cluster [Et4N][MeSFe3(CO)9] (2). However, the reaction of 1 with BrCH2C(O)OCH3 forms [Et4N][SFe3(CO)8(m-CO)(CH2C(O)OCH3)] (3), in which the organic ligand CH2C(O)OCH3 bonds with Fe atom. When 1 is treated with Ru3(CO)12 in refluxing acetone, the octahedral cluster [Et4N]2[SFe2Ru3- (CO)14] (4) is obtained. Subsequent methylation of 4 with CF3SO3CH3 gives the octahedral cluster [Et4N][MeSFe2Ru3(CO)14] (5), in which the sulfur atom is pentacoordinated to one methyl group and two Ru and two Fe atoms. The reaction of 1 with propargyl bromide in CH3CN affords three novel products, (m3-S)Fe3(CO)9(m3-h1:h2:h1-C(H)=C(CH3)) (6), SFe2(CO)6(m2-h1:h2-CH=C(CH3)C(O)) (7) and the heterotetranuclear metal-(acylallenyl) complexes [Et4N][(m2-S)Fe3(CO)9(m2-h1:h3-C(O)- C(H)=C=CH2)] (8). When 8 is treated with [Cu(CH3CN)4][BF4], 6 and SFe2(CO)6(m2-h1:h2-C(O)CH=C(CH3)) (9) are obtained. Further reaction of 8 with CF3SO3CH3 yields the methylated cluster (m2-S)Fe3(CO)9(m3-h2:h2:h1-C(OCH3)C(H)=CCH2) (10). 2. Bi/Fe/CO System When [Et4N]2[Bi4Fe4(CO)13] is treated with Fe(CO)4(NCCH3), the expected product [Et4N]2[Bi4Fe5(CO)17] is obtained. Further treatment of [Et4N]2[Bi4Fe4(CO)13] with [Mn(CO)5(CH3CN)][PF6] forms the mixed-metal cluster [Et4N][Bi4Fe3Mn(CO)14] (11) instead of the expected complex [Et4N]2[Bi4Fe4Mn(CO)18]. 3. E/Cr/CO (E = As, Sb, Bi) System The new series of trigonal-pyramidal chromium complexes [Et4N]2[HE{Cr(CO)5}3] (E = As, 13a; Sb, 13b) are obtained from the reaction of E2O3 (E = As, Sb) with Cr(CO)6 in concentrated KOH methanolic solution. These are the first examples of group 6 complexes containing E-H fragment (E = As, Sb). In As case, we also obtain the dihydrido complex [Et4N][H2As{Cr(CO)5}2] (12). Subsequent reaction of 13a with RBr (R = PhCH2, HCoCCH2) forms the addition products [Et4N][(R)(Br)As{Cr(CO)5}2] (R = PhCH2, 14; CH3CoC, 15) and [BrCr(CO)5]-. However, 13b reacts with RX (R = PhCH2, X = Br; R = CH3(CH2)5C(O), X = Cl) respectively to produce the haloantimony complexes [XSb{Cr(CO)5}3]2- (X = Br, Cl). The mixed dihaloantimony complex [Bu4N][BrISb{Cr(CO)5}2] (17) can be produced from the bromoantimony complex [Bu4N]2[BrSb{Cr(CO)5}3] with CH2I2. However, if [Et4N]2[BrSb{Cr(CO)5}3] is treated with CH3C(O)Cl, a dicholoantimony complex [Et4N][Cl2Sb{Cr(CO)5}2] (16) is obtained instead of the expected mixed bromocholoantimony complex. The treatment of Na2BiO3 with Cr(CO)6 in concentrated KOH methanolic solution at low temperature (<20℃) gives the trianion complex [Et4N]3[Bi{Cr(CO)5}4] (18). If the reaction is at higher temperature (>30℃), the purple-red complex [Et4N]2[MeBi{Cr(CO)5}3] (19) is obtained, in which the methyl group is from methanol. When 18 is treated with RI (R = Me, Et), the bismuth-alkylated cluster [Et4N]2[RBi{Cr(CO)5}3] is obtained. Further reaction of 18 with CH2Cl2 produces the cholobismuth complex [Et4N]2[ClBi{Cr(CO)5}3] (20). Subsequent reaction of 19 with MeI yields [Et4N][Me2Bi{Cr(CO)5}2] (21).

並列關鍵字

main group transition metal metal cluster carbonyl chromium

參考文獻


13. Shieh, M.; Tsai, Y.-C.; Cherng, J.-J.; Shieh, M.-H.; Chen, H.-S.;
46. (a) Whitmire, K. H. J. Coord. Chem. 1988, 17, 95. (b) Adams, R. D.; Babin, J. E.; Tsai, M. Inorg. Chem. 1987, 26, 2807. (c) Adams, R. D.; Babin, J. E.; Tsai, M. Inorg. Chem. 1986, 25, 4460. (d) Adams, R. D.; Babin, J. E.; Tsai, M. Inorg. Chem. 1986, 25, 4514.
85. (a) Wood, C. d.; Mclain, S. J.; Schrock, R. R. J. Am. Chem. Soc. 1979, 101, 3201. (b) Casy., C. P.; Polichonwski, S. W.; Shusterman, A. J.; Jones, C. R. J. Am. Chem. Soc. 1979, 101, 7282. (c) Fischer, H.; Dotz, K. H. Chem. Ber. 1980, 113, 193.
75. (a) Riely, P. E.; Davis, R. E.; Allison, N. T.; Jones, W. M. Inorg. Chem. 1982, 21, 1321. (b) Huttner, G.; Gartzke, W. Chem. Ber. 1972, 105, 2714. (c) Findley, P. F.; Mills, O. S. J. Chem. Soc. A 1969, 1279.
3. Fachinetti, G. et al., Inorg. Chem. 1994, 33, 1719.

延伸閱讀