Title

1050-O純鋁電阻點銲之銲核形成及接合強度之可靠度分析

Translated Titles

A Study on the Nugget Forming and the Reliability Analysis of Joining Strength for 1050-O Pure Aluminum by Resistance Spot Welding

Authors

鄭淳護

Key Words

可靠度 ; 電阻點銲 ; 銲核形成 ; 純鋁1050 ; 韋伯分析 ; reliability ; resistance spot welding ; nugget forming ; 1050 pure aluminum ; Weibull analysis

PublicationName

臺灣師範大學工業教育學系學位論文

Volume or Term/Year and Month of Publication

2001年

Academic Degree Category

碩士

Advisor

呂傳盛;程金保

Content Language

繁體中文

Chinese Abstract

由於鋁合金1050性質接近純鋁,質輕且散熱性良好,成形性佳,對於散熱要求日趨嚴格的3C產業,純鋁或鋁合金的使用將會愈來愈普遍,且其電阻點銲的接合技術也日益重要。但就現今的鋁合金電阻點銲而言,接合方式仍有待改善,且在直流式點銲機昂貴而市面上仍以單相交流點銲機為主的情況下,純鋁電阻點銲的應用勢必會受到限制。 本研究利用大型單相交流點銲機來進行鋁合金1050-O商用材點銲。在不同電阻點銲製程參數(熔接電流、通電時間及電極加壓力)下,針對不同厚度之鋁合金1050的銲核成長及拉剪強度作探討,且進一步尋求微硬度、銲核大小、拉剪強度與點銲製程三參數間的關係。最後取最佳製程參數範圍的拉剪強度值,利用韋伯分佈函數來探討鋁合金1050-O點銲後接合強度的可靠度。 由銲核微觀組織與微硬度試驗結果得知,銲核附近組織可區分為三個區域,分別為熔融區、熱影響區及母材。熔融區的微硬度值最高,母材微硬度值次之,熱影響區的微硬度值最低。且在適當的銲接條件下,銲核的微硬度會隨著通電時間和熔接電流的增加而下降,也會隨著電極加壓力的增加而增加。而銲核尺寸則會隨著熔接電流和通電時間增加而增加,隨著電極加壓的增加而下降。 由於實驗材料三種板厚的實驗結果具有相同的趨勢,本研究內容以1mm板厚試片的實驗結果為例,敘述製程參數與拉剪強度間韋伯解析之相關性。由二參數韋伯可靠度分析結果得知,在使用單相交流點銲機進行單點搭接之點銲時,銲後點銲件的接合強度之韋伯模數均大於1,屬於磨耗故障型。另外,在熔接電流固定且考慮最小壽命(t0)的情況下,通電時間10cycles和電極加壓力100kgf是本研究製程參數中最能預測極限拉剪強度值之銲接條件,同時也是二參數韋伯模數中,可靠度最佳的銲接條件。故本研究1mm相對最佳製程參數為熔接電流17.3kA,通電時間10cycles,電極加壓力100kgf。 且由相同的實驗方法得知,0.8mm的最佳製程參數為熔接電流17.3kA,通電時間10cycles,電極加壓力60kgf。而1.2mm試片的最佳製程參數為熔接電流17.3kA,通電時間13cycles,電極加壓力100kgf。

English Abstract

Because of the properties of 1050 aluminum alloy close to pure aluminum, it has good thermal conductivity and formability. For the 3C industries requiring for strict thermal conductivity, the use of pure aluminum or aluminum alloys will be more and more popular and so be the jointing technology of resistance spot welding. As far as the resistance spot welding of aluminum alloys, the method of joint still needs to be improved. Due to the expensive cost of the kinetic-energy machines, the single-phase welding machines are still the major in the market. Therefore, the application of resistance spot welding of pure aluminum must be limited. The purpose of this study is to use single-phase A.C. welding machine to connect 1050-O commercially pure aluminum. Under different welding parameters, aiming at the discussion of the nugget growth and tensile shear strength of different thickness of 1050 aluminum alloy, there is a further point which seeks a correlation between the microhardness, nugget size, tensile shear strength and welding parameters. Eventually, we take the value of tensile shear strength in the best range of welding parameters and then use the function of Weibull distribution to discuss the reliability of the jointing strength of spot welded 1050-O aluminum alloy. According to the experimental results of metallographic studies and microhardness test, the hardness in the fusion zone is highest, the base metal is second and the heat-affected zone is lowest. In proper welding conditions, when the holding time and welding current increase, the hardness in the nugget decreases. However, when the electrode force increases, the hardness increases. Furthermore, when the holding time and welding current increase, the nugget size increases. Unexpectedly, when the electrode force increases, the nugget size decreases. With the same trend of experimental results of the three kinds of material thickness, we take the experimental results of 1mm thickness in this research to illustrate a correlation on Weibull reliability analysis between welding parameters and tensile shear strength. According to Weibull reliability analysis, all Weibull modulus are larger than 1 with jointing strength of spot welds belonging to wear failure mode. With welding current fixed and minimum life considered, 10cycles of holding time and 100kgf electrode force are the best welding conditions that can forecast ultimate tensile shear strength and they also have the best reliability in Weibull distribution of two parameters. Therefore, the best welding parameters of the 1mm thickness are 17.3kA of welding current, 10cycles of holding time and 100kgf electrode force. According to the same experimental method, the best parameters of 0.8mm thickness are 17.3kA of welding current, 10cycles of holding time and 60kgf electrode force. Further, those of 1.2mm are 17.3kA of welding current, 13cycles of holding time and 100kgf electrode force.

Topic Category 科技學院 > 工業教育學系
工程學 > 工程學總論
社會科學 > 教育學
Reference
  1. 7. Y Imamur and S Sasabe, “Resistance spot weld quality in Al-Mg alloy sheet”, Welding Journal, Vol.9, 1995, p.686-696.
    連結:
  2. 8. Ulrich Dilthey, Aachen, and Sven Hicken, Munich, “Metallographic investigations into wear processes on electrodes during the resistance spot welding of aluminum”, Welding and Cutting, 1998.
    連結:
  3. 9. E.P. Patrick, J.R. Auhl, and T.S. Sun, “Understanding the Process Mechanisms Is Key to Reliable Resistance Spot Welding Aluminum Auto Body Components”, 1985,SAE, Technical paper 840291.
    連結:
  4. 10. American Welding Society, “Welding Handbook”, 7th vol.3, 1980, p.14-15.
    連結:
  5. 16. 陳錦文,不同製程參數對鋁合金6061電阻點銲性質之影響,台灣師範大學工業教育學系89學年度碩士論文。
    連結:
  6. 17. S.M. Darwish*, S.D. Al-Dekhial, “Micro-hardness of spot welded(B.S. 1050) commercial aluminum as correlated with welding variables and strength attributes”, Journal of Materials Processing Technology Vol.91, 1999, pp.43-51.
    連結:
  7. 18. S. M. Darwish, “Correlation between spot weld quality and vibration behavior”, Int. Mater. Prod. Technol. Vol.12, No.1, 1997, pp.59-67.
    連結:
  8. 22. Hao, M., Osman, K. A., Boomer, D. R., Newton, C. J., and Sheasby, P. G., “Online nugget expulsion detection form aluminum spot welding and weld bonding”, 1996, SAE Paper, No.960172.
    連結:
  9. 28. B. Faucher and W. R. Tyson, “On the Determination of Weibull Parameters”, Journal of Material Science Letters, Vol.7, 1988, pp.1199-1203.
    連結:
  10. 30. X. D. Li and L. Edwards, “Theoretical Modeling of Fatigue Threshold For Aluminum Alloys”, Engineering Fracture Mechanics, Vol.54, No.1, 1996, pp.35-48.
    連結:
  11. 35. J. Forgione, “Statistical Aspects of Failure Analysis”, American Society for Metals, 1964, pp.360-364.
    連結:
  12. 43. L. Xu and J. A. Khan, “Nugget Growth Model for Aluminum Alloys during Resistance Spot Welding”, Welding Journal, November 1999, p.367s to 372-s.
    連結:
  13. 45. R. L. Cohen and K. W. West, “Aluminum Spot Weld Strength Determined from Electrical Measurement”, Welding Journal, June 1985, pp.37-41.
    連結:
  14. 48. S.M. Darwish*, S.D. Al-Dekhial, “Statistical models for spot welding of commercial aluminum sheets”, International Journal of Machine Tools & Manufacture Vol.39, 1999, pp.1589-1610.
    連結:
  15. 49. M. Zhou, S. J. Hu and H. Zhang, “Critical Specimen Sizes for Tensile-Shear Testing of Steel Sheets”, Welding Journal, Vol.78 No.9, September 1999, pp.305-s to 312-s.
    連結:
  16. 50. Barkey, M. E.; Kang, H., “Testing of spot welded coupons in combined tension and shear”, Experimental Techniques Vol.23, No.5, 1999, pp.20-22.
    連結:
  17. 54. American welding society, “Welding handbook” 8th Vol.2 1991 p.227-233.
    連結:
  18. 1. 蔡幸甫,輕金屬產業發展狀況及商機,輕金屬特刊,工業材料第174期,2001年,頁77-83。
  19. 2. 啟學編輯部編譯,鋁合金資料集,啟學出版社,1989,p.13-14.
  20. 3. American welding society, “Spot, Seam, and Projection Welding”, Welding handbook, 7th Vol.3 1980 p.7-52.
  21. 4. J. Heb, T. Kern, W. Kriegl and M. Schweizer, “Visualization of the Resistance Spot Welding Process in the Production Line”, Welding Journal, December 1998, pp.495.
  22. 5. Resistance Welding Committee/The Society, “Resistance Welding, Theory and Use”, American Welding Society, 1956, p.5-22.
  23. 6. He Tang, “Machine Mechanical Characteristics And Their Influences On Resistance Spot Quality”,2000
  24. 11. Bomface J. B., “Welding Engineering”, The Welding Journal American Welding Society, New York.
  25. 12. Senkara, J.; Zhang, H., “Cracking in spot welding aluminum alloy AA5754”, Welding Journal, Vol.79, No.7, 2000, p.194-201.
  26. 13. Cross, C. E., Tack, W. T., Loechel, L. W., and Kramer, L. S., “Aluminum weldability and hot tearing theory”, Weldability of Materials, pp.275-282, and R. A. Patterson, K. W. Mahin, eds., ASM Interial, Materials Park, Ohio.
  27. 14. A. Gean, S. A. Westgate, J. C. Kucza and J. C. Ehrstrom, “Static and Fatigue Behavior of Spot-Welded 5182-O Aluminum Alloy Sheet”, Welding Journal, March 1999,pp.80-86.
  28. 15. P. H. Thornton, A. R. Krause and G. Davies, “Fatigue strength is dependent on nugget diameter rather than the absence of porosity and expulsion”,1996.
  29. 19. Kimchi, M., “Spot weld properties when welding with expulsion -a comparative study”, Welding Journal, Vol.63, No.2, 1984, pp.58-63.
  30. 20. Karagoulis, M. J., “Control of materials processing variables in production resistance spot welding”, Proc. AWS Sheet Metal Welding Conference V, Paper No.B5, American Welding Society, 1992, Miami, Fla.
  31. 21. Newton, C., Browne, D. J., Thornton, M. C., Boomer, D. R., and Keay, B. F., “The fundamentals of resistance spot welding aluminum”, Proc. AWS Sheet Metal Welding Conference Vl, Paper No. E2, American Welding Society, 1994, Miami, Fla.
  32. 23. Davies, A. C., “The Science and Practice of Welding”, Vol.2, the practice of welding, Cambridge University Press, Cambridge, U. K., 10th ed., 1996, p.210.
  33. 24. Dickinson, D. W., Franklin, J. E., and Stanya, A., “Characterization of spot welding behavior by dynamic electrical parameter monitoring”, Welding Journal, Vol.59 No.6, 1980, pp.170-s to 176-s.
  34. 25. Wu, K. C., “The mechanism of expulsion in weld bonding of anodized aluminum”, Welding Journal, Vol.56, No.8, 1977, pp.238-s to 244-s.
  35. 26. H. Zhang, “Expulsion and Its Influence on Weld Quality”, Welding Journal. Vol.78, No11, 1999, p.373-380.
  36. 27. 陳右昇,ADC12壓鑄鋁合金共振疲勞壽命之可靠度分析,成功大學材料工程學系89學年度碩士論文。
  37. 29. P. D. T. O’Conner, “Practical Reliability Engineering”, 3th Edition, John Wily and Sons, New York, 1986, Chapter 1-6.
  38. 31. 信賴性管理便覽編集委員會編,品質保證之信賴性管理便覽,日本規格協會出版,1985,第45∼51頁(日文)。
  39. 32. 野中保雄著,陳耀茂譯,可靠度數據的蒐集與整理方法性,大學圖書供應社出版,1992,第3∼4章。
  40. 33. 蘇貴芳著,相關與迴歸分析,復漢出版社,1991,第2章。
  41. 34. 松尾陽太郎編譯,R. Roy著,陶瓷的壽命與破壞-Weibull統計的利用,內田老鶴圃出版,1989,第2章(日文)。
  42. 36. 真壁肇編,陳耀茂譯,可靠性工程入門,中華民國品質管制學會發行,1989,第八章。
  43. 37. 北川賢司著,壽命試驗技術,CORONA株式會社,1986,第3章(日文)。
  44. 38. 星出敏彥著,基礎強度學-破壞力學與信賴性解析入門,內田老鶴圃出版,1989,第6章(日文)。
  45. 39. 鹽見弘著,信賴工學析入門,丸善株式會社出版,1972,第3章(日文)。
  46. 40. 黃祥生,Al-Mg-Zn合金電阻點銲微觀組織及拉伸強度變動之間關係探討,國立台灣師大工業教育學系90學年度碩士論文。
  47. 41. 黃國聰,Al-Mg-Si合金電阻點銲微觀組織及拉伸強度變動之間關係探討,國立台灣師大工業教育學系90學年度碩士論文。
  48. 42. 材料強度機率模式研究會編,材料強度的統計性質,養賢堂株式會社出版,1992,第2章(日文)。
  49. 44. J. E. Gould, “An Examination of Nugget Development during Spot Welding, Using Both Experimental and Analytical Techniques”, Welding Research Supplement, January 1987,pp.1-10.
  50. 46. R. L. Cohen and K. W. West, “Flaws in Aluminum Spot Welds Observed by Electrical Measurements”, Welding Journal, August 1984, pp.21-23.
  51. 47. Z. Han, J. E. Indacochea, C. H. Chen and S. Bhat, “Weld Nugget Development and Integrity in Resistance Spot Welding of High-Strength Cold-Rolled Sheet Steels”, Welding Journal, Vol.72, No.5, May 1993, p209-s.
  52. 51. D. K. Aidun and R. W. Bennett, “Effect of Resistance Welding Variables on the Strength of Spot Welded 6061-T6 Aluminum Alloy”, Welding Journal, December 1985,pp15-25.
  53. 52. American welding society, “Welding handbook”, Vol.4, 1980, p.322.
  54. 53. G. Lechner and B. Bertsche著,吳振環等譯,機械產品的可靠性,北京機械工業出版社,1994,第3∼6章。
  55. 55.Radaj, D. Source, “Fatigue assessment of spot welds based on local stress parameters”, Welding Journal, v. 79, no2, Feb. 2000, p.51s-55s