透過您的圖書館登入
IP:3.19.211.134
  • 學位論文

以學習環之教學策略探討國中學生溶液相關概念的學習成效

Investigating the Junior High School Students’ Conceptions of Solutions by the Learning Cycle Instructional Strategy

指導教授 : 黃寶鈿
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本研究旨在探討學生對於溶液相關概念的認知情況以及經過教學後學生的學習情形。研究進行時藉由面談及開放式問卷等方式來瞭解學生對於溶液概念的想法,再以「示範式群測」的測試工具收集資料,並根據學習環之教學策略針對溶液相關概念設計教學活動,藉以幫助學生學習與導正學生既有的錯誤概念,最後再藉由學習興趣暨態度量表的實施,以瞭解學生對於本教學模式之興趣與態度。本研究的對象為國中一年級至三年級學生,分成實驗組與控制組,共計433人。主要的研究結果說明如下: 一、學生對於溶液的基本定義不清楚,習慣用日常生活經驗來解釋溶解現象,並以溶質的巨觀外型來判斷其在溶液中的微觀情況。多數學生受到不同的溶解方式與靜置時間的影響而對溶質均勻分佈與粒子概念產生許多錯誤的想法。而在溶質粒子守恆性概念方面,多數學生認為加熱會讓溶解在溶液中的溶質進一步溶解,因而改變溶質的體積大小與數量多寡。 二、比較年級的認知差異方面,研究主要發現學生在氣體溶質粒子概念、粒子守恆性概念與濃度概念等方面的答對率隨著年級的增加而成長。 三、本教學模式對於實驗組學生溶液相關概念的學習具有正面的幫助,尤其在溶質的粒子觀點以及溶質粒子守恆概念的進步幅度最大。另外,本研究中所取樣的國二學生整體的學習效果比國一好,而國三學生的學習效果則略高於國二學生。 四、從學習感受問卷結果顯示,大部分的實驗組學生對於這次的學習環教學活動感到有興趣且多數持有正面的態度,並認為這個活動的教學內容對於以後學習理化是有幫助的。

並列摘要


The main purpose of this study is to investigate students’ recognition of correlated concepts of solutions. At the beginning of this study, the students’ concepts of solutions were collected by interviews and open-end questions with a group demonstration technique. Then, an instructional strategy for the correlated concepts of solution was designed. At the end of this study, the students’ learning interests and attitude for this teaching model were evaluated by questionnaire. The subjects were 433 students of grade 7 to grade 9 in the junior high schools. They were divided into the experimental and the control groups. The main findings of the study were: 1. Students held unclear concepts about the definition of solution, and they were used to explain dissolution by daily life experience and to describe the microphenomenon of the solutes in solution by the macroscopic point of view of the solutes. Many students were influenced by the different ways of dissolution and had many misconceptions about the concept of homogenous of solute particles. In the conservation concepts of solute particle, many students thought that the volume and numbers of solutes would be changed, because heat made the solute melt further in the solution. 2. Comparing the difference in the recognition of the concepts of solution, conservation and concentration of particles in gaseous solute were progressed as grade growth. 3. Comparing the improvement between the experimental and the control group, it revealed that the instructional model would assist students’ understanding the conceptions of solutions, especially in the particle concept of solute and the conservation concepts of solute particle. Besides, in this research, it found that the effectiveness of teaching for the eight grade students were better than that of seven grade students, and the nine grade students were better than that of the eight grade students. 4. Most students were interesting and assumed a positive attitude toward this learning cycle instructional activities and they thought the contents in this instructional unit would be useful for their learning of physical science in the future.

參考文獻


王春源、郭重吉和黃曼麗(民81):物質變化相關概念診斷測驗工具之發展。科學教育,頁241-264。
許健將、郭重吉、李成康(民81):利用二段式測驗探查高三學生有關共價鍵及分子結構之迷思概念。科學教育(彰師),3,175-197。
李武勳(民89):國中學生氣體壓力概念之教學成效探討。國立台灣師範大學師範大學化學研究所碩士論文。
邱上峰(民91):以個別化電腦輔助教學探討學生對於氣體粒子概念之學習成效。國立台灣師範大學化學研究所碩士論文。
黃瑞仁(民91):以示範實驗式群測與粒子模型模擬教學探討國中學生對於化學變化的相關概念:以氣體之產生為例。國立臺灣師範大學化學研究所碩士論文。

延伸閱讀